|
import os |
|
|
|
import gradio as gr |
|
import torch |
|
from pdf2image import convert_from_path |
|
from PIL import Image |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from transformers import AutoProcessor |
|
|
|
from colpali_engine.models.paligemma_colbert_architecture import ColPali |
|
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator |
|
from colpali_engine.utils.colpali_processing_utils import process_images, process_queries |
|
|
|
|
|
def search(query: str, ds, images): |
|
qs = [] |
|
with torch.no_grad(): |
|
batch_query = process_queries(processor, [query], mock_image) |
|
batch_query = {k: v.to(device) for k, v in batch_query.items()} |
|
embeddings_query = model(**batch_query) |
|
qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) |
|
|
|
|
|
retriever_evaluator = CustomEvaluator(is_multi_vector=True) |
|
scores = retriever_evaluator.evaluate(qs, ds) |
|
best_page = int(scores.argmax(axis=1).item()) |
|
return f"The most relevant page is {best_page}", images[best_page] |
|
|
|
|
|
def index(file, ds): |
|
"""Example script to run inference with ColPali""" |
|
images = [] |
|
for f in file: |
|
images.extend(convert_from_path(f)) |
|
|
|
|
|
dataloader = DataLoader( |
|
images, |
|
batch_size=4, |
|
shuffle=False, |
|
collate_fn=lambda x: process_images(processor, x), |
|
) |
|
for batch_doc in tqdm(dataloader): |
|
with torch.no_grad(): |
|
batch_doc = {k: v.to(device) for k, v in batch_doc.items()} |
|
embeddings_doc = model(**batch_doc) |
|
ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) |
|
return f"Uploaded and converted {len(images)} pages", ds, images |
|
|
|
|
|
COLORS = ["#4285f4", "#db4437", "#f4b400", "#0f9d58", "#e48ef1"] |
|
|
|
model_name = "vidore/colpali" |
|
token = os.environ.get("HF_TOKEN") |
|
model = ColPali.from_pretrained( |
|
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token=token |
|
).eval() |
|
model.load_adapter(model_name) |
|
processor = AutoProcessor.from_pretrained(model_name, token=token) |
|
device = model.device |
|
mock_image = Image.new("RGB", (448, 448), (255, 255, 255)) |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models ππ") |
|
gr.Markdown("## 1οΈβ£ Upload PDFs") |
|
file = gr.File(file_types=["pdf"], file_count="multiple") |
|
|
|
gr.Markdown("## 2οΈβ£ Convert the PDFs and upload") |
|
convert_button = gr.Button("π Convert and upload") |
|
message = gr.Textbox("Files not yet uploaded") |
|
embeds = gr.State(value=[]) |
|
imgs = gr.State(value=[]) |
|
|
|
|
|
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) |
|
|
|
gr.Markdown("## 3οΈβ£ Search") |
|
query = gr.Textbox(placeholder="Enter your query here") |
|
search_button = gr.Button("π Search") |
|
message2 = gr.Textbox("Query not yet set") |
|
output_img = gr.Image() |
|
|
|
search_button.click(search, inputs=[query, embeds, imgs], outputs=[message2, output_img]) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=10).launch(debug=True) |