File size: 6,319 Bytes
37112ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import spaces
import gradio as gr
from huggingface_hub import ModelCard

from modules.helpers.common_helpers import ControlNetReq, BaseReq, BaseImg2ImgReq, BaseInpaintReq
from modules.helpers.sdxl_helpers import gen_img
from config import sdxl_loras

loras = sdxl_loras

# Event functions
def update_fast_generation(fast_generation):
    if fast_generation:
        return (
            gr.update(
                value=0.0
            ),
            gr.update(
                value=8
            )
        )
    else:
        return (
            gr.update(
                value=7.0
            ),
            gr.update(
                value=20
            )
        )


def add_to_enabled_loras(selected_lora, enabled_loras):
    lora_data = loras
    try:
        selected_lora = int(selected_lora)
        
        if 0 <= selected_lora: # is the index of the lora in the gallery
            lora_info = lora_data[selected_lora]
            enabled_loras.append({
                "repo_id": lora_info["repo"],
                "trigger_word": lora_info["trigger_word"]
            })
    except ValueError:
        link = selected_lora.split("/")
        if len(link) == 2:
            model_card = ModelCard.load(selected_lora)
            trigger_word = model_card.data.get("instance_prompt", "")
            enabled_loras.append({
                "repo_id": selected_lora,
                "trigger_word": trigger_word
            })
    
    return (
        gr.update( # selected_lora
            value=""
        ),
        gr.update( # custom_lora_info
            value="",
            visible=False
        ),
        gr.update( # enabled_loras
            value=enabled_loras
        )
    )


@spaces.GPU(duration=75)
def generate_image(
    model, prompt, negative_prompt, fast_generation, enabled_loras, enabled_embeddings, # type: ignore
    lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore
    img2img_image, inpaint_image, canny_image, pose_image, depth_image, scribble_image, # type: ignore
    img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, scribble_strength, # type: ignore
    resize_mode,
    scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore
    image_num_inference_steps, image_clip_skip, image_guidance_scale, image_seed, # type: ignore
    refiner, vae
):
    try:
        base_args = {
            "model": model,
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "fast_generation": fast_generation,
            "loras": None,
            "embeddings": None,
            "resize_mode": resize_mode,
            "scheduler": scheduler,
            "height": image_height,
            "width": image_width,
            "num_images_per_prompt": image_num_images_per_prompt,
            "num_inference_steps": image_num_inference_steps,
            "clip_skip": image_clip_skip,
            "guidance_scale": image_guidance_scale,
            "seed": image_seed,
            "refiner": refiner,
            "vae": vae,
            "controlnet_config": None,
        }
        base_args = BaseReq(**base_args)
        
        if len(enabled_loras) > 0:
            base_args.loras = []
            for enabled_lora, slider in zip(enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5]):
                if enabled_lora["repo_id"]:
                    base_args.loras.append({
                        "repo_id": enabled_lora["repo_id"],
                        "weight": slider
                    })
        
        if len(enabled_embeddings) > 0:
            base_args.embeddings = enabled_embeddings
        
        image = None
        mask_image = None
        strength = None
        
        if img2img_image:
            image = img2img_image
            strength = float(img2img_strength)
            
            base_args = BaseImg2ImgReq(
                **base_args.__dict__,
                image=image,
                strength=strength
            )
        elif inpaint_image:
            image = inpaint_image['background'] if not all(pixel == (0, 0, 0) for pixel in list(inpaint_image['background'].getdata())) else None
            mask_image = inpaint_image['layers'][0] if image else None
            strength = float(inpaint_strength)
            
            if image and mask_image:
                base_args = BaseInpaintReq(
                    **base_args.__dict__,
                    image=image,
                    mask_image=mask_image,
                    strength=strength
                )
        elif any([canny_image, pose_image, depth_image]):
            base_args.controlnet_config = ControlNetReq(
                controlnets=[],
                control_images=[],
                controlnet_conditioning_scale=[]
            )
            
            if canny_image:
                base_args.controlnet_config.controlnets.append("canny")
                base_args.controlnet_config.control_images.append(canny_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength))
            if pose_image:
                base_args.controlnet_config.controlnets.append("pose")
                base_args.controlnet_config.control_images.append(pose_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength))
            if depth_image:
                base_args.controlnet_config.controlnets.append("depth")
                base_args.controlnet_config.control_images.append(depth_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength))
            if scribble_image:
                base_args.controlnet_config.controlnets.append("scribble")
                base_args.controlnet_config.control_images.append(scribble_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(scribble_strength))
        else:
            base_args = BaseReq(**base_args.__dict__)
        
        return gr.update(
            value=gen_img(base_args),
            interactive=True
        )
    except Exception as e:
        raise gr.Error(f"Error: {e}") from e