Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from newspaper import Article
|
2 |
+
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
6 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
7 |
+
|
8 |
+
import nltk
|
9 |
+
nltk.download('punkt')
|
10 |
+
from nltk.tokenize import sent_tokenize
|
11 |
+
|
12 |
+
def my_paraphrase(sentence):
|
13 |
+
|
14 |
+
sentence = "paraphrase: " + sentence + " </s>"
|
15 |
+
encoding = tokenizer.encode_plus(sentence,padding=True, return_tensors="pt")
|
16 |
+
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
17 |
+
|
18 |
+
outputs = model.generate(
|
19 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
20 |
+
max_length=256,
|
21 |
+
do_sample=True,
|
22 |
+
top_k=120,
|
23 |
+
top_p=0.95,
|
24 |
+
early_stopping=True,
|
25 |
+
num_return_sequences=1)
|
26 |
+
output = tokenizer.decode(outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
27 |
+
|
28 |
+
return(output)
|
29 |
+
|
30 |
+
def text(url):
|
31 |
+
article = Article(url)
|
32 |
+
article.download()
|
33 |
+
article.parse()
|
34 |
+
|
35 |
+
input_text = article.text
|
36 |
+
output = " ".join([my_paraphrase(sent) for sent in sent_tokenize(input_text)])
|
37 |
+
|
38 |
+
return output
|
39 |
+
|
40 |
+
import gradio as gr
|
41 |
+
def summarize(URL):
|
42 |
+
|
43 |
+
outputtext = text(URL)
|
44 |
+
return outputtext
|
45 |
+
gr.Interface(fn=summarize, inputs=gr.inputs.Textbox(lines=7, placeholder="Enter text here"), outputs=[gr.outputs.Textbox(label="Paraphrased Text")],examples=[["developed by python team"
|
46 |
+
]]).launch(inline=False)
|