Spaces:
Build error
Build error
File size: 5,667 Bytes
e78c13e 2736057 e78c13e 8728fb1 e78c13e 8728fb1 e78c13e 8728fb1 e78c13e 8728fb1 e78c13e 7018e07 e78c13e 8728fb1 7018e07 e78c13e 7018e07 e78c13e 8728fb1 e78c13e b09b653 7018e07 e78c13e 7018e07 e78c13e 7018e07 2736057 e78c13e d44c9b5 e78c13e 4269547 b09b653 7018e07 8728fb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import os
import cv2
import shutil
import sys
from subprocess import call
import torch
import numpy as np
from skimage import color
import torchvision.transforms as transforms
from PIL import Image
import torch
os.system("pip install dlib")
os.system('bash setup.sh')
def lab2rgb(L, AB):
"""Convert an Lab tensor image to a RGB numpy output
Parameters:
L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array)
AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array)
Returns:
rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array)
"""
AB2 = AB * 110.0
L2 = (L + 1.0) * 50.0
Lab = torch.cat([L2, AB2], dim=1)
Lab = Lab[0].data.cpu().float().numpy()
Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0))
rgb = color.lab2rgb(Lab) * 255
return rgb
def get_transform(model_name,params=None, grayscale=False, method=Image.BICUBIC):
#params
preprocess = 'resize'
load_size = 256
crop_size = 256
transform_list = []
if grayscale:
transform_list.append(transforms.Grayscale(1))
if model_name == "Pix2Pix Unet 256":
osize = [load_size, load_size]
transform_list.append(transforms.Resize(osize, method))
# if 'crop' in preprocess:
# if params is None:
# transform_list.append(transforms.RandomCrop(crop_size))
return transforms.Compose(transform_list)
def inferRestoration(img, model_name):
#if model_name == "Pix2Pix":
model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'pix2pixRestoration_unet256')
transform_list = [
transforms.ToTensor(),
transforms.Resize([256,256], Image.BICUBIC),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
transform = transforms.Compose(transform_list)
img = transform(img)
img = torch.unsqueeze(img, 0)
result = model(img)
result = result[0].detach()
result = (result +1)/2.0
result = transforms.ToPILImage()(result)
return result
def inferColorization(img,model_name):
#print(model_name)
if model_name == "Pix2Pix Resnet 9block":
model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'pix2pixColorization_resnet9b')
elif model_name == "Pix2Pix Unet 256":
model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'pix2pixColorization_unet256')
elif model_name == "Deoldify":
model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'DeOldifyColorization')
transform_list = [
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]
transform = transforms.Compose(transform_list)
#a = transforms.ToTensor()(a)
img = img.convert('L')
img = transform(img)
img = torch.unsqueeze(img, 0)
result = model(img)
result = result[0].detach()
result = (result +1)/2.0
#img = transforms.Grayscale(3)(img)
#img = transforms.ToTensor()(img)
#img = torch.unsqueeze(img, 0)
#result = model(img)
#result = torch.clip(result, min=0, max=1)
image_pil = transforms.ToPILImage()(result)
return image_pil
transform_seq = get_transform(model_name)
img = transform_seq(img)
# if model_name == "Pix2Pix Unet 256":
# img.resize((256,256))
img = np.array(img)
lab = color.rgb2lab(img).astype(np.float32)
lab_t = transforms.ToTensor()(lab)
A = lab_t[[0], ...] / 50.0 - 1.0
B = lab_t[[1, 2], ...] / 110.0
#data = {'A': A, 'B': B, 'A_paths': "", 'B_paths': ""}
L = torch.unsqueeze(A, 0)
#print(L.shape)
ab = model(L)
Lab = lab2rgb(L, ab).astype(np.uint8)
image_pil = Image.fromarray(Lab)
#image_pil.save('test.png')
#print(Lab.shape)
return image_pil
def colorizaition(image,model_name):
image = Image.fromarray(image)
result = inferColorization(image,model_name)
return result
def run_cmd(command):
try:
call(command, shell=True)
except KeyboardInterrupt:
print("Process interrupted")
sys.exit(1)
def run(image,Restoration_mode, Colorizaition_mode):
if Restoration_mode == "BOPBTL":
if os.path.isdir("Temp"):
shutil.rmtree("Temp")
os.makedirs("Temp")
os.makedirs("Temp/input")
print(type(image))
cv2.imwrite("Temp/input/input_img.png", image)
command = ("python run.py --input_folder "
+ "Temp/input"
+ " --output_folder "
+ "Temp"
+ " --GPU "
+ "-1"
+ " --with_scratch")
run_cmd(command)
result_restoration = Image.open("Temp/final_output/input_img.png")
shutil.rmtree("Temp")
elif Restoration_mode == "Pix2Pix":
result_restoration = inferRestoration(image, Restoration_mode)
print("Restoration_mode",Restoration_mode)
result_colorization = inferColorization(result_restoration,Colorizaition_mode)
return result_colorization
examples = [['example/1.jpeg',"BOPBTL","Deoldify"],['example/2.jpg',"BOPBTL","Deoldify"],['example/3.jpg',"BOPBTL","Deoldify"],['example/4.jpg',"BOPBTL","Deoldify"]]
iface = gr.Interface(run,
[gr.inputs.Image(),gr.inputs.Radio(["BOPBTL", "Pix2Pix"]),gr.inputs.Radio(["Deoldify", "Pix2Pix Resnet 9block","Pix2Pix Unet 256"])],
outputs="image",
examples=examples).launch(debug=True,share=True) |