Spaces:
Running
on
T4
Running
on
T4
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from pyannote.audio import Pipeline
|
4 |
+
from pyannote.core import Segment, Annotation
|
5 |
+
import os
|
6 |
+
from huggingface_hub import login
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
# Authenticate with Hugging Face
|
10 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
+
if HF_TOKEN:
|
12 |
+
login(token=HF_TOKEN)
|
13 |
+
else:
|
14 |
+
raise ValueError("HF_TOKEN environment variable not set. Please set it in Hugging Face Space settings.")
|
15 |
+
|
16 |
+
# Initialize the pyannote pipeline with GPU support
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
pipeline = Pipeline.from_pretrained(
|
19 |
+
"pyannote/speaker-diarization-3.1",
|
20 |
+
use_auth_token=HF_TOKEN
|
21 |
+
).to(device)
|
22 |
+
|
23 |
+
def diarize_audio(audio_file):
|
24 |
+
try:
|
25 |
+
# Verify audio file format
|
26 |
+
if not audio_file.endswith('.wav'):
|
27 |
+
return "Error: Please upload a WAV file."
|
28 |
+
|
29 |
+
# Process the audio file
|
30 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
31 |
+
temp_file.write(open(audio_file, 'rb').read())
|
32 |
+
temp_file_path = temp_file.name
|
33 |
+
|
34 |
+
# Perform diarization
|
35 |
+
diarization = pipeline(temp_file_path)
|
36 |
+
|
37 |
+
# Format the output
|
38 |
+
output = []
|
39 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
40 |
+
start = turn.start
|
41 |
+
end = turn.end
|
42 |
+
output.append(f"Speaker {speaker}: {start:.1f}s - {end:.1f}s")
|
43 |
+
|
44 |
+
# Clean up temporary file
|
45 |
+
os.unlink(temp_file_path)
|
46 |
+
|
47 |
+
# Return formatted results
|
48 |
+
return "\n".join(output) if output else "No speakers detected."
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
return f"Error processing audio: {str(e)}"
|
52 |
+
|
53 |
+
# Create Gradio interface
|
54 |
+
iface = gr.Interface(
|
55 |
+
fn=diarize_audio,
|
56 |
+
inputs=gr.Audio(type="filepath", label="Upload WAV Audio File"),
|
57 |
+
outputs=gr.Textbox(label="Diarization Results"),
|
58 |
+
title="Speaker Diarization with pyannote.audio 3.1",
|
59 |
+
description="Upload a WAV audio file to perform speaker diarization. Results show speaker segments with timestamps."
|
60 |
+
)
|
61 |
+
|
62 |
+
# Launch the interface
|
63 |
+
if __name__ == "__main__":
|
64 |
+
iface.launch()
|