Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -5,58 +5,127 @@ from pyannote.core import Segment, Annotation
|
|
5 |
import os
|
6 |
from huggingface_hub import login
|
7 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Authenticate with Hugging Face
|
10 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
-
|
12 |
-
login(token=HF_TOKEN)
|
13 |
-
else:
|
14 |
-
raise ValueError("HF_TOKEN environment variable not set. Please set it in Hugging Face Space settings.")
|
15 |
|
16 |
-
# Initialize the pyannote pipeline with
|
17 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
pipeline = Pipeline.from_pretrained(
|
19 |
"pyannote/speaker-diarization-3.1",
|
20 |
-
use_auth_token=
|
21 |
-
)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
if not audio_file.endswith('.wav'):
|
27 |
-
return "Error: Please upload a WAV file."
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
31 |
-
|
32 |
temp_file_path = temp_file.name
|
33 |
-
|
34 |
-
# Perform diarization
|
35 |
-
diarization = pipeline(temp_file_path)
|
36 |
-
|
37 |
-
#
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
40 |
start = turn.start
|
41 |
end = turn.end
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
#
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
-
return f"Error processing audio: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Create Gradio interface
|
54 |
iface = gr.Interface(
|
55 |
-
fn=
|
56 |
-
inputs=gr.Audio(type="filepath", label="Upload
|
57 |
-
outputs=
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
# Launch the interface
|
|
|
5 |
import os
|
6 |
from huggingface_hub import login
|
7 |
import tempfile
|
8 |
+
import librosa
|
9 |
+
import soundfile as sf
|
10 |
+
import numpy as np
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
# Suppress torchaudio backend warning
|
14 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="pyannote.audio.core.io")
|
15 |
|
16 |
# Authenticate with Hugging Face
|
17 |
+
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN") # Set in Hugging Face Space secrets
|
18 |
+
login(token=os.environ["HF_TOKEN"])
|
|
|
|
|
|
|
19 |
|
20 |
+
# Initialize the pyannote pipeline with pre-trained model
|
|
|
21 |
pipeline = Pipeline.from_pretrained(
|
22 |
"pyannote/speaker-diarization-3.1",
|
23 |
+
use_auth_token=True
|
24 |
+
)
|
25 |
|
26 |
+
# Optimize for GPU if available
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
pipeline.to(device)
|
|
|
|
|
29 |
|
30 |
+
def process_audio(audio_file):
|
31 |
+
"""
|
32 |
+
Process the input audio file and return diarization results.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
audio_file: Path to the input audio file
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
Tuple containing:
|
39 |
+
- Diarization text output
|
40 |
+
- Path to visualization plot
|
41 |
+
- Number of speakers detected
|
42 |
+
"""
|
43 |
+
try:
|
44 |
+
# Load and preprocess audio
|
45 |
+
audio, sr = librosa.load(audio_file, sr=16000, mono=True)
|
46 |
+
|
47 |
+
# Save temporary audio file in WAV format (pyannote requirement)
|
48 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
49 |
+
sf.write(temp_file.name, audio, sr)
|
50 |
temp_file_path = temp_file.name
|
51 |
+
|
52 |
+
# Perform speaker diarization
|
53 |
+
diarization = pipeline({"uri": "audio", "audio": temp_file_path})
|
54 |
+
|
55 |
+
# Clean up temporary file
|
56 |
+
os.unlink(temp_file_path)
|
57 |
+
|
58 |
+
# Process diarization results
|
59 |
+
output_text = []
|
60 |
+
speakers = set()
|
61 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
62 |
start = turn.start
|
63 |
end = turn.end
|
64 |
+
output_text.append(
|
65 |
+
f"Speaker {speaker}: {start:.2f}s - {end:.2f}s"
|
66 |
+
)
|
67 |
+
speakers.add(speaker)
|
68 |
+
|
69 |
+
# Generate visualization
|
70 |
+
plot_path = visualize_diarization(diarization, audio, sr)
|
71 |
+
|
72 |
+
return (
|
73 |
+
"\n".join(output_text),
|
74 |
+
plot_path,
|
75 |
+
len(speakers)
|
76 |
+
)
|
77 |
+
|
78 |
except Exception as e:
|
79 |
+
return f"Error processing audio: {str(e)}", None, 0
|
80 |
+
|
81 |
+
def visualize_diarization(diarization, audio, sr):
|
82 |
+
"""
|
83 |
+
Create a visualization of the diarization results.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
diarization: Pyannote diarization object
|
87 |
+
audio: Audio waveform
|
88 |
+
sr: Sample rate
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
Path to saved visualization plot
|
92 |
+
"""
|
93 |
+
import matplotlib.pyplot as plt
|
94 |
+
|
95 |
+
plt.figure(figsize=(12, 4))
|
96 |
+
|
97 |
+
# Plot waveform
|
98 |
+
time = np.linspace(0, len(audio)/sr, num=len(audio))
|
99 |
+
plt.plot(time, audio, alpha=0.3, color='gray')
|
100 |
+
|
101 |
+
# Plot diarization segments
|
102 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
103 |
+
plt.axvspan(turn.start, turn.end, alpha=0.2, label=f'Speaker {speaker}')
|
104 |
+
|
105 |
+
plt.xlabel('Time (s)')
|
106 |
+
plt.ylabel('Amplitude')
|
107 |
+
plt.title('Speaker Diarization')
|
108 |
+
plt.legend()
|
109 |
+
|
110 |
+
# Save plot
|
111 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_plot:
|
112 |
+
plt.savefig(temp_plot.name)
|
113 |
+
plot_path = temp_plot.name
|
114 |
+
|
115 |
+
plt.close()
|
116 |
+
return plot_path
|
117 |
|
118 |
# Create Gradio interface
|
119 |
iface = gr.Interface(
|
120 |
+
fn=process_audio,
|
121 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio File"),
|
122 |
+
outputs=[
|
123 |
+
gr.Textbox(label="Diarization Results"),
|
124 |
+
gr.Image(label="Visualization"),
|
125 |
+
gr.Number(label="Number of Speakers")
|
126 |
+
],
|
127 |
+
title="Speaker Diarization with Pyannote 3.1",
|
128 |
+
description="Upload an audio file to perform speaker diarization. Results show speaker segments and a visualization."
|
129 |
)
|
130 |
|
131 |
# Launch the interface
|