Spaces:
Runtime error
Runtime error
Commit
·
e7ebc48
0
Parent(s):
Duplicate from Everymans-ai/GPT-knowledge-management
Browse filesCo-authored-by: Abhilash V J <[email protected]>
- .gitattributes +34 -0
- .streamlit/secrets.toml +0 -0
- 1.5 +29 -0
- README.md +15 -0
- app.py +339 -0
- packages.txt +2 -0
- pinecorn.haystack-pipeline.yml.yml +55 -0
- requirements.txt +10 -0
- search.py +60 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.streamlit/secrets.toml
ADDED
File without changes
|
1.5
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Requirement already satisfied: tensorboard in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (2.11.0)
|
2 |
+
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (0.4.6)
|
3 |
+
Requirement already satisfied: markdown>=2.6.8 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (3.4.1)
|
4 |
+
Requirement already satisfied: requests<3,>=2.21.0 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (2.28.1)
|
5 |
+
Requirement already satisfied: absl-py>=0.4 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (1.3.0)
|
6 |
+
Requirement already satisfied: setuptools>=41.0.0 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (65.4.1)
|
7 |
+
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (0.6.1)
|
8 |
+
Requirement already satisfied: wheel>=0.26 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (0.37.1)
|
9 |
+
Requirement already satisfied: google-auth<3,>=1.6.3 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (2.12.0)
|
10 |
+
Requirement already satisfied: protobuf<4,>=3.9.2 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (3.19.4)
|
11 |
+
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (1.8.1)
|
12 |
+
Requirement already satisfied: grpcio>=1.24.3 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (1.49.1)
|
13 |
+
Requirement already satisfied: numpy>=1.12.0 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (1.21.6)
|
14 |
+
Requirement already satisfied: werkzeug>=1.0.1 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from tensorboard) (2.2.2)
|
15 |
+
Requirement already satisfied: six>=1.9.0 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from google-auth<3,>=1.6.3->tensorboard) (1.16.0)
|
16 |
+
Requirement already satisfied: cachetools<6.0,>=2.0.0 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from google-auth<3,>=1.6.3->tensorboard) (5.2.0)
|
17 |
+
Requirement already satisfied: rsa<5,>=3.1.4 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from google-auth<3,>=1.6.3->tensorboard) (4.9)
|
18 |
+
Requirement already satisfied: pyasn1-modules>=0.2.1 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from google-auth<3,>=1.6.3->tensorboard) (0.2.8)
|
19 |
+
Requirement already satisfied: requests-oauthlib>=0.7.0 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard) (1.3.1)
|
20 |
+
Requirement already satisfied: importlib-metadata>=4.4 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from markdown>=2.6.8->tensorboard) (5.0.0)
|
21 |
+
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from requests<3,>=2.21.0->tensorboard) (1.26.12)
|
22 |
+
Requirement already satisfied: charset-normalizer<3,>=2 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from requests<3,>=2.21.0->tensorboard) (2.1.1)
|
23 |
+
Requirement already satisfied: idna<4,>=2.5 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from requests<3,>=2.21.0->tensorboard) (3.4)
|
24 |
+
Requirement already satisfied: certifi>=2017.4.17 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from requests<3,>=2.21.0->tensorboard) (2022.12.7)
|
25 |
+
Requirement already satisfied: MarkupSafe>=2.1.1 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from werkzeug>=1.0.1->tensorboard) (2.1.1)
|
26 |
+
Requirement already satisfied: zipp>=0.5 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard) (3.11.0)
|
27 |
+
Requirement already satisfied: typing-extensions>=3.6.4 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard) (4.4.0)
|
28 |
+
Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard) (0.4.8)
|
29 |
+
Requirement already satisfied: oauthlib>=3.0.0 in /mnt/e/kaggle2022/conda/envs/pt/lib/python3.7/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard) (3.2.1)
|
README.md
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Haystack QA
|
3 |
+
emoji: 📚
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.15.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
duplicated_from: Everymans-ai/GPT-knowledge-management
|
12 |
+
---
|
13 |
+
|
14 |
+
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
import sys
|
7 |
+
import uuid
|
8 |
+
from json import JSONDecodeError
|
9 |
+
from pathlib import Path
|
10 |
+
from time import sleep
|
11 |
+
|
12 |
+
import openai
|
13 |
+
import pandas as pd
|
14 |
+
import pinecone
|
15 |
+
import streamlit as st
|
16 |
+
from annotated_text import annotation
|
17 |
+
from haystack import Document
|
18 |
+
from haystack.document_stores import PineconeDocumentStore
|
19 |
+
from haystack.nodes import (
|
20 |
+
DocxToTextConverter,
|
21 |
+
EmbeddingRetriever,
|
22 |
+
FARMReader,
|
23 |
+
FileTypeClassifier,
|
24 |
+
PDFToTextConverter,
|
25 |
+
PreProcessor,
|
26 |
+
TextConverter,
|
27 |
+
)
|
28 |
+
from haystack.pipelines import ExtractiveQAPipeline, Pipeline
|
29 |
+
from markdown import markdown
|
30 |
+
from sentence_transformers import SentenceTransformer
|
31 |
+
from tqdm.auto import tqdm
|
32 |
+
|
33 |
+
# get API key from top-right dropdown on OpenAI website
|
34 |
+
openai.api_key = st.secrets["OPENAI_API_KEY"]
|
35 |
+
index_name = "openai-ada-002-index"
|
36 |
+
|
37 |
+
|
38 |
+
# connect to pinecone environment
|
39 |
+
pinecone.init(api_key=st.secrets["pinecone_apikey"], environment="us-east1-gcp")
|
40 |
+
|
41 |
+
embed_model = "text-embedding-ada-002"
|
42 |
+
preprocessor = PreProcessor(
|
43 |
+
clean_empty_lines=True,
|
44 |
+
clean_whitespace=True,
|
45 |
+
clean_header_footer=False,
|
46 |
+
split_by="word",
|
47 |
+
split_length=200,
|
48 |
+
split_respect_sentence_boundary=True,
|
49 |
+
)
|
50 |
+
file_type_classifier = FileTypeClassifier()
|
51 |
+
text_converter = TextConverter()
|
52 |
+
pdf_converter = PDFToTextConverter()
|
53 |
+
docx_converter = DocxToTextConverter()
|
54 |
+
|
55 |
+
# check if the abstractive-question-answering index exists
|
56 |
+
if index_name not in pinecone.list_indexes():
|
57 |
+
# delete the current index and create the new index if it does not exist
|
58 |
+
for delete_index in pinecone.list_indexes():
|
59 |
+
pinecone.delete_index(delete_index)
|
60 |
+
pinecone.create_index(index_name, dimension=1536, metric="cosine")
|
61 |
+
|
62 |
+
# connect to abstractive-question-answering index we created
|
63 |
+
index = pinecone.Index(index_name)
|
64 |
+
|
65 |
+
FILE_UPLOAD_PATH = "./data/uploads/"
|
66 |
+
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
|
67 |
+
|
68 |
+
limit = 3750
|
69 |
+
|
70 |
+
|
71 |
+
def retrieve(query):
|
72 |
+
res = openai.Embedding.create(input=[query], engine=embed_model)
|
73 |
+
|
74 |
+
# retrieve from Pinecone
|
75 |
+
xq = res["data"][0]["embedding"]
|
76 |
+
|
77 |
+
# get relevant contexts
|
78 |
+
res = index.query(xq, top_k=3, include_metadata=True)
|
79 |
+
contexts = [x["metadata"].get("text", "") for x in res["matches"]]
|
80 |
+
|
81 |
+
# build our prompt with the retrieved contexts included
|
82 |
+
prompt_start = "Answer the question based on the context below.\n\n" + "Context:\n"
|
83 |
+
prompt_end = f"\n\nQuestion: {query}\nAnswer:"
|
84 |
+
# append contexts until hitting limit
|
85 |
+
for i in range(1, len(contexts)):
|
86 |
+
if len("\n\n---\n\n".join(contexts[:i])) >= limit:
|
87 |
+
prompt = prompt_start + "\n\n---\n\n".join(contexts[: i - 1]) + prompt_end
|
88 |
+
break
|
89 |
+
elif i == len(contexts) - 1:
|
90 |
+
prompt = prompt_start + "\n\n---\n\n".join(contexts) + prompt_end
|
91 |
+
return prompt, contexts
|
92 |
+
|
93 |
+
|
94 |
+
# first let's make it simpler to get answers
|
95 |
+
def complete(prompt):
|
96 |
+
# query text-davinci-003
|
97 |
+
res = openai.Completion.create(
|
98 |
+
engine="text-davinci-003",
|
99 |
+
prompt=prompt,
|
100 |
+
temperature=0,
|
101 |
+
max_tokens=400,
|
102 |
+
top_p=1,
|
103 |
+
frequency_penalty=0,
|
104 |
+
presence_penalty=0,
|
105 |
+
stop=None,
|
106 |
+
)
|
107 |
+
return res["choices"][0]["text"].strip()
|
108 |
+
|
109 |
+
|
110 |
+
def query(question, top_k_reader, top_k_retriever):
|
111 |
+
# first we retrieve relevant items from Pinecone
|
112 |
+
query_with_contexts, contexts = retrieve(question)
|
113 |
+
return complete(query_with_contexts), contexts
|
114 |
+
|
115 |
+
|
116 |
+
indexing_pipeline_with_classification = Pipeline()
|
117 |
+
indexing_pipeline_with_classification.add_node(
|
118 |
+
component=file_type_classifier, name="FileTypeClassifier", inputs=["File"]
|
119 |
+
)
|
120 |
+
indexing_pipeline_with_classification.add_node(
|
121 |
+
component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"]
|
122 |
+
)
|
123 |
+
indexing_pipeline_with_classification.add_node(
|
124 |
+
component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"]
|
125 |
+
)
|
126 |
+
indexing_pipeline_with_classification.add_node(
|
127 |
+
component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"]
|
128 |
+
)
|
129 |
+
indexing_pipeline_with_classification.add_node(
|
130 |
+
component=preprocessor,
|
131 |
+
name="Preprocessor",
|
132 |
+
inputs=["TextConverter", "PdfConverter", "DocxConverter"],
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
def set_state_if_absent(key, value):
|
137 |
+
if key not in st.session_state:
|
138 |
+
st.session_state[key] = value
|
139 |
+
|
140 |
+
|
141 |
+
# Adjust to a question that you would like users to see in the search bar when they load the UI:
|
142 |
+
DEFAULT_QUESTION_AT_STARTUP = os.getenv(
|
143 |
+
"DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics."
|
144 |
+
)
|
145 |
+
DEFAULT_ANSWER_AT_STARTUP = os.getenv(
|
146 |
+
"DEFAULT_ANSWER_AT_STARTUP",
|
147 |
+
"7% more remote workers have been at their current organization for 5 years or fewer",
|
148 |
+
)
|
149 |
+
|
150 |
+
# Sliders
|
151 |
+
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
|
152 |
+
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
|
153 |
+
|
154 |
+
|
155 |
+
st.set_page_config(
|
156 |
+
page_title="GPT3 and Langchain Demo"
|
157 |
+
)
|
158 |
+
|
159 |
+
# Persistent state
|
160 |
+
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
|
161 |
+
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP)
|
162 |
+
set_state_if_absent("results", None)
|
163 |
+
|
164 |
+
|
165 |
+
# Small callback to reset the interface in case the text of the question changes
|
166 |
+
def reset_results(*args):
|
167 |
+
st.session_state.answer = None
|
168 |
+
st.session_state.results = None
|
169 |
+
st.session_state.raw_json = None
|
170 |
+
|
171 |
+
|
172 |
+
# Title
|
173 |
+
st.write("# GPT3 and Langchain Demo")
|
174 |
+
st.markdown(
|
175 |
+
"""
|
176 |
+
This demo takes its data from the documents uploaded to the Pinecone index through this app. \n
|
177 |
+
Ask any question from the uploaded documents and Pinecone will retrieve the context for answers and GPT3 will answer them using the retrieved context. \n
|
178 |
+
*Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you.
|
179 |
+
""",
|
180 |
+
unsafe_allow_html=True,
|
181 |
+
)
|
182 |
+
|
183 |
+
# Sidebar
|
184 |
+
st.sidebar.header("Options")
|
185 |
+
st.sidebar.write("## File Upload:")
|
186 |
+
data_files = st.sidebar.file_uploader(
|
187 |
+
"upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
|
188 |
+
)
|
189 |
+
ALL_FILES = []
|
190 |
+
META_DATA = []
|
191 |
+
for data_file in data_files:
|
192 |
+
# Upload file
|
193 |
+
if data_file:
|
194 |
+
file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}"
|
195 |
+
with open(file_path, "wb") as f:
|
196 |
+
f.write(data_file.getbuffer())
|
197 |
+
ALL_FILES.append(file_path)
|
198 |
+
st.sidebar.write(str(data_file.name) + " ✅ ")
|
199 |
+
META_DATA.append({"filename": data_file.name})
|
200 |
+
|
201 |
+
|
202 |
+
if len(ALL_FILES) > 0:
|
203 |
+
# document_store.update_embeddings(retriever, update_existing_embeddings=False)
|
204 |
+
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)[
|
205 |
+
"documents"
|
206 |
+
]
|
207 |
+
index_name = "qa_demo"
|
208 |
+
# we will use batches of 64
|
209 |
+
batch_size = 100
|
210 |
+
# docs = docs['documents']
|
211 |
+
with st.spinner("🧠 Performing indexing of uplaoded documents... \n "):
|
212 |
+
for i in range(0, len(docs), batch_size):
|
213 |
+
# find end of batch
|
214 |
+
i_end = min(i + batch_size, len(docs))
|
215 |
+
# extract batch
|
216 |
+
batch = [doc.content for doc in docs[i:i_end]]
|
217 |
+
# generate embeddings for batch
|
218 |
+
try:
|
219 |
+
res = openai.Embedding.create(input=batch, engine=embed_model)
|
220 |
+
except Exception as e:
|
221 |
+
done = False
|
222 |
+
count = 0
|
223 |
+
while not done and count < 5:
|
224 |
+
sleep(5)
|
225 |
+
try:
|
226 |
+
res = openai.Embedding.create(input=batch, engine=embed_model)
|
227 |
+
done = True
|
228 |
+
except:
|
229 |
+
count += 1
|
230 |
+
|
231 |
+
pass
|
232 |
+
if count >= 5:
|
233 |
+
res = []
|
234 |
+
st.error(f"🐞 File indexing failed{str(e)}")
|
235 |
+
|
236 |
+
if len(res) > 0:
|
237 |
+
embeds = [record["embedding"] for record in res["data"]]
|
238 |
+
# get metadata
|
239 |
+
meta = []
|
240 |
+
for doc in docs[i:i_end]:
|
241 |
+
meta_dict = doc.meta
|
242 |
+
meta_dict["text"] = doc.content
|
243 |
+
meta.append(meta_dict)
|
244 |
+
# create unique IDs
|
245 |
+
ids = [doc.id for doc in docs[i:i_end]]
|
246 |
+
# add all to upsert list
|
247 |
+
to_upsert = list(zip(ids, embeds, meta))
|
248 |
+
# upsert/insert these records to pinecone
|
249 |
+
_ = index.upsert(vectors=to_upsert)
|
250 |
+
|
251 |
+
# top_k_reader = st.sidebar.slider(
|
252 |
+
# "Max. number of answers",
|
253 |
+
# min_value=1,
|
254 |
+
# max_value=10,
|
255 |
+
# value=DEFAULT_NUMBER_OF_ANSWERS,
|
256 |
+
# step=1,
|
257 |
+
# on_change=reset_results,
|
258 |
+
# )
|
259 |
+
# top_k_retriever = st.sidebar.slider(
|
260 |
+
# "Max. number of documents from retriever",
|
261 |
+
# min_value=1,
|
262 |
+
# max_value=10,
|
263 |
+
# value=DEFAULT_DOCS_FROM_RETRIEVER,
|
264 |
+
# step=1,
|
265 |
+
# on_change=reset_results,
|
266 |
+
# )
|
267 |
+
# data_files = st.file_uploader(
|
268 |
+
# "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden"
|
269 |
+
# )
|
270 |
+
# for data_file in data_files:
|
271 |
+
# # Upload file
|
272 |
+
# if data_file:
|
273 |
+
# raw_json = upload_doc(data_file)
|
274 |
+
|
275 |
+
question = st.text_input(
|
276 |
+
value=st.session_state.question,
|
277 |
+
max_chars=100,
|
278 |
+
on_change=reset_results,
|
279 |
+
label="question",
|
280 |
+
label_visibility="hidden",
|
281 |
+
)
|
282 |
+
col1, col2 = st.columns(2)
|
283 |
+
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
284 |
+
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
285 |
+
|
286 |
+
# Run button
|
287 |
+
run_pressed = col1.button("Run")
|
288 |
+
if run_pressed:
|
289 |
+
|
290 |
+
run_query = run_pressed or question != st.session_state.question
|
291 |
+
# Get results for query
|
292 |
+
if run_query and question:
|
293 |
+
reset_results()
|
294 |
+
st.session_state.question = question
|
295 |
+
|
296 |
+
with st.spinner("🧠 Performing neural search on documents... \n "):
|
297 |
+
try:
|
298 |
+
st.session_state.results = query(question, top_k_reader=None, top_k_retriever=None)
|
299 |
+
except JSONDecodeError as je:
|
300 |
+
st.error(
|
301 |
+
"👓 An error occurred reading the results. Is the document store working?"
|
302 |
+
)
|
303 |
+
except Exception as e:
|
304 |
+
logging.exception(e)
|
305 |
+
if "The server is busy processing requests" in str(e) or "503" in str(e):
|
306 |
+
st.error("🧑🌾 All our workers are busy! Try again later.")
|
307 |
+
else:
|
308 |
+
st.error(f"🐞 An error occurred during the request. {str(e)}")
|
309 |
+
|
310 |
+
|
311 |
+
if st.session_state.results:
|
312 |
+
|
313 |
+
st.write("## Results:")
|
314 |
+
|
315 |
+
result, contexts = st.session_state.results
|
316 |
+
# answer, context = result.answer, result.context
|
317 |
+
# start_idx = context.find(answer)
|
318 |
+
# end_idx = start_idx + len(answer)
|
319 |
+
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
|
320 |
+
try:
|
321 |
+
# source = f"[{result.meta['Title']}]({result.meta['link']})"
|
322 |
+
# st.write(
|
323 |
+
# markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
|
324 |
+
# unsafe_allow_html=True,
|
325 |
+
# )
|
326 |
+
all_contexts = '\n'.join(contexts)
|
327 |
+
st.write(markdown(f"Answer: \n {result} \n"),
|
328 |
+
unsafe_allow_html=True,
|
329 |
+
)
|
330 |
+
except:
|
331 |
+
# filename = result.meta.get('filename', "")
|
332 |
+
# st.write(
|
333 |
+
# markdown(f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
|
334 |
+
# unsafe_allow_html=True,
|
335 |
+
# )
|
336 |
+
st.write(
|
337 |
+
markdown(f"Answer: {result}"),
|
338 |
+
unsafe_allow_html=True,
|
339 |
+
)
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
poppler-utils
|
2 |
+
xpdf
|
pinecorn.haystack-pipeline.yml.yml
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# To allow your IDE to autocomplete and validate your YAML pipelines, name them as <name of your choice>.haystack-pipeline.yml
|
2 |
+
|
3 |
+
version: ignore
|
4 |
+
|
5 |
+
components: # define all the building-blocks for Pipeline
|
6 |
+
- name: DocumentStore
|
7 |
+
type: ElasticsearchDocumentStore
|
8 |
+
params:
|
9 |
+
index=: qa_demo
|
10 |
+
similarity: cosine
|
11 |
+
embedding_dim: 768
|
12 |
+
- name: Retriever
|
13 |
+
type: BM25Retriever
|
14 |
+
params:
|
15 |
+
document_store: DocumentStore # params can reference other components defined in the YAML
|
16 |
+
top_k: 5
|
17 |
+
- name: Reader # custom-name for the component; helpful for visualization & debugging
|
18 |
+
type: FARMReader # Haystack Class name for the component
|
19 |
+
params:
|
20 |
+
model_name_or_path: deepset/roberta-base-squad2
|
21 |
+
context_window_size: 500
|
22 |
+
return_no_answer: true
|
23 |
+
- name: TextFileConverter
|
24 |
+
type: TextConverter
|
25 |
+
- name: PDFFileConverter
|
26 |
+
type: PDFToTextConverter
|
27 |
+
- name: Preprocessor
|
28 |
+
type: PreProcessor
|
29 |
+
params:
|
30 |
+
split_by: word
|
31 |
+
split_length: 1000
|
32 |
+
- name: FileTypeClassifier
|
33 |
+
type: FileTypeClassifier
|
34 |
+
|
35 |
+
pipelines:
|
36 |
+
- name: query # a sample extractive-qa Pipeline
|
37 |
+
nodes:
|
38 |
+
- name: Retriever
|
39 |
+
inputs: [Query]
|
40 |
+
- name: Reader
|
41 |
+
inputs: [Retriever]
|
42 |
+
- name: indexing
|
43 |
+
nodes:
|
44 |
+
- name: FileTypeClassifier
|
45 |
+
inputs: [File]
|
46 |
+
- name: TextFileConverter
|
47 |
+
inputs: [FileTypeClassifier.output_1]
|
48 |
+
- name: PDFFileConverter
|
49 |
+
inputs: [FileTypeClassifier.output_2]
|
50 |
+
- name: Preprocessor
|
51 |
+
inputs: [PDFFileConverter, TextFileConverter]
|
52 |
+
- name: Retriever
|
53 |
+
inputs: [Preprocessor]
|
54 |
+
- name: DocumentStore
|
55 |
+
inputs: [Retriever]
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
protobuf==3.19
|
2 |
+
streamlit==1.13
|
3 |
+
st-annotated-text
|
4 |
+
farm-haystack[pinecone]
|
5 |
+
farm-haystack[ocr]
|
6 |
+
pinecone-client
|
7 |
+
datasets
|
8 |
+
tensorboard
|
9 |
+
openai
|
10 |
+
langchain
|
search.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import pinecone
|
4 |
+
index_name = "abstractive-question-answering"
|
5 |
+
|
6 |
+
# check if the abstractive-question-answering index exists
|
7 |
+
if index_name not in pinecone.list_indexes():
|
8 |
+
# create the index if it does not exist
|
9 |
+
pinecone.create_index(
|
10 |
+
index_name,
|
11 |
+
dimension=768,
|
12 |
+
metric="cosine"
|
13 |
+
)
|
14 |
+
|
15 |
+
# connect to abstractive-question-answering index we created
|
16 |
+
index = pinecone.Index(index_name)
|
17 |
+
|
18 |
+
# we will use batches of 64
|
19 |
+
batch_size = 64
|
20 |
+
|
21 |
+
for i in tqdm(range(0, len(df), batch_size)):
|
22 |
+
# find end of batch
|
23 |
+
i_end = min(i+batch_size, len(df))
|
24 |
+
# extract batch
|
25 |
+
batch = df.iloc[i:i_end]
|
26 |
+
# generate embeddings for batch
|
27 |
+
emb = retriever.encode(batch["passage_text"].tolist()).tolist()
|
28 |
+
# get metadata
|
29 |
+
meta = batch.to_dict(orient="records")
|
30 |
+
# create unique IDs
|
31 |
+
ids = [f"{idx}" for idx in range(i, i_end)]
|
32 |
+
# add all to upsert list
|
33 |
+
to_upsert = list(zip(ids, emb, meta))
|
34 |
+
# upsert/insert these records to pinecone
|
35 |
+
_ = index.upsert(vectors=to_upsert)
|
36 |
+
|
37 |
+
# check that we have all vectors in index
|
38 |
+
index.describe_index_stats()
|
39 |
+
|
40 |
+
# from transformers import BartTokenizer, BartForConditionalGeneration
|
41 |
+
|
42 |
+
# # load bart tokenizer and model from huggingface
|
43 |
+
# tokenizer = BartTokenizer.from_pretrained('vblagoje/bart_lfqa')
|
44 |
+
# generator = BartForConditionalGeneration.from_pretrained('vblagoje/bart_lfqa')
|
45 |
+
|
46 |
+
# def query_pinecone(query, top_k):
|
47 |
+
# # generate embeddings for the query
|
48 |
+
# xq = retriever.encode([query]).tolist()
|
49 |
+
# # search pinecone index for context passage with the answer
|
50 |
+
# xc = index.query(xq, top_k=top_k, include_metadata=True)
|
51 |
+
# return xc
|
52 |
+
|
53 |
+
# def format_query(query, context):
|
54 |
+
# # extract passage_text from Pinecone search result and add the tag
|
55 |
+
# context = [f" {m['metadata']['passage_text']}" for m in context]
|
56 |
+
# # concatinate all context passages
|
57 |
+
# context = " ".join(context)
|
58 |
+
# # contcatinate the query and context passages
|
59 |
+
# query = f"question: {query} context: {context}"
|
60 |
+
# return query
|