Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -181,92 +181,88 @@ Ask any question from the uploaded documents and Pinecone will retrieve the cont
|
|
181 |
)
|
182 |
|
183 |
# Sidebar
|
184 |
-
st.sidebar.header("Options")
|
185 |
-
st.sidebar.write("## File Upload:")
|
186 |
-
data_files = st.sidebar.file_uploader(
|
187 |
-
|
188 |
-
)
|
189 |
|
190 |
-
print("data_files",data_files)
|
191 |
-
ALL_FILES = []
|
192 |
-
META_DATA = []
|
193 |
-
for data_file in data_files:
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
# print("file_path",file_path)
|
212 |
-
|
213 |
-
# with open(file_path, "wb") as f:
|
214 |
-
# f.write(file_path.getbuffer())
|
215 |
|
216 |
-
|
217 |
-
|
218 |
|
219 |
print("ALL_FILES",ALL_FILES)
|
220 |
print("META_DATA",META_DATA)
|
221 |
|
222 |
-
if len(ALL_FILES) > 0:
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
|
271 |
# top_k_reader = st.sidebar.slider(
|
272 |
# "Max. number of answers",
|
|
|
181 |
)
|
182 |
|
183 |
# Sidebar
|
184 |
+
# st.sidebar.header("Options")
|
185 |
+
# st.sidebar.write("## File Upload:")
|
186 |
+
# data_files = st.sidebar.file_uploader(
|
187 |
+
# "upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
|
188 |
+
# )
|
189 |
|
190 |
+
# print("data_files",data_files)
|
191 |
+
# ALL_FILES = []
|
192 |
+
# META_DATA = []
|
193 |
+
# for data_file in data_files:
|
194 |
+
# # Upload file
|
195 |
+
# if data_file:
|
196 |
+
# file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}"
|
197 |
|
198 |
+
# print("file_path",file_path)
|
199 |
+
# print("data_file",data_file)
|
200 |
+
# print("data_file.getbuffer()",data_file.getbuffer())
|
201 |
|
202 |
+
# with open(file_path, "wb") as f:
|
203 |
+
# f.write(data_file.getbuffer())
|
204 |
+
# ALL_FILES.append(file_path)
|
205 |
+
# st.sidebar.write(str(data_file.name) + " ✅ ")
|
206 |
+
# META_DATA.append({"filename": data_file.name})
|
207 |
+
text_file = 'wellous_products.txt'
|
208 |
+
|
209 |
+
file_path = "./" f"{text_file}"
|
210 |
+
print("file_path",file_path)
|
|
|
|
|
|
|
|
|
211 |
|
212 |
+
ALL_FILES.append(file_path)
|
213 |
+
META_DATA.append({"filename": text_file})
|
214 |
|
215 |
print("ALL_FILES",ALL_FILES)
|
216 |
print("META_DATA",META_DATA)
|
217 |
|
218 |
+
# if len(ALL_FILES) > 0:
|
219 |
+
# document_store.update_embeddings(retriever, update_existing_embeddings=False)
|
220 |
+
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)[
|
221 |
+
"documents"
|
222 |
+
]
|
223 |
+
index_name = "qa_demo"
|
224 |
+
# we will use batches of 64
|
225 |
+
batch_size = 100
|
226 |
+
# docs = docs['documents']
|
227 |
+
with st.spinner("🧠 Performing indexing of uplaoded documents... \n "):
|
228 |
+
for i in range(0, len(docs), batch_size):
|
229 |
+
# find end of batch
|
230 |
+
i_end = min(i + batch_size, len(docs))
|
231 |
+
# extract batch
|
232 |
+
batch = [doc.content for doc in docs[i:i_end]]
|
233 |
+
# generate embeddings for batch
|
234 |
+
try:
|
235 |
+
res = openai.Embedding.create(input=batch, engine=embed_model)
|
236 |
+
except Exception as e:
|
237 |
+
done = False
|
238 |
+
count = 0
|
239 |
+
while not done and count < 5:
|
240 |
+
sleep(5)
|
241 |
+
try:
|
242 |
+
res = openai.Embedding.create(input=batch, engine=embed_model)
|
243 |
+
done = True
|
244 |
+
except:
|
245 |
+
count += 1
|
246 |
+
|
247 |
+
pass
|
248 |
+
if count >= 5:
|
249 |
+
res = []
|
250 |
+
st.error(f"🐞 File indexing failed{str(e)}")
|
251 |
+
|
252 |
+
if len(res) > 0:
|
253 |
+
embeds = [record["embedding"] for record in res["data"]]
|
254 |
+
# get metadata
|
255 |
+
meta = []
|
256 |
+
for doc in docs[i:i_end]:
|
257 |
+
meta_dict = doc.meta
|
258 |
+
meta_dict["text"] = doc.content
|
259 |
+
meta.append(meta_dict)
|
260 |
+
# create unique IDs
|
261 |
+
ids = [doc.id for doc in docs[i:i_end]]
|
262 |
+
# add all to upsert list
|
263 |
+
to_upsert = list(zip(ids, embeds, meta))
|
264 |
+
# upsert/insert these records to pinecone
|
265 |
+
_ = index.upsert(vectors=to_upsert)
|
266 |
|
267 |
# top_k_reader = st.sidebar.slider(
|
268 |
# "Max. number of answers",
|