mamogasr's picture
Upload folder using huggingface_hub
5fdb69e verified
# openai_scraper_playwright.py
import asyncio
from playwright.async_api import async_playwright
from openai import OpenAI
import logging
import random
import time
import os
from prometheus_client import start_http_server, Counter, Histogram
from diskcache import Cache
from dotenv import load_dotenv
load_dotenv()
SCRAPE_ATTEMPTS = Counter('scrape_attempts', 'Total scraping attempts')
SCRAPE_DURATION = Histogram('scrape_duration', 'Scraping duration distribution')
cache = Cache('./scraper_cache')
class ScrapingError(Exception): pass
class ContentAnalysisError(Exception): pass
class EnhancedOpenAIScraper:
API_KEY = os.getenv("OPENAI_API_KEY")
BROWSER_EXECUTABLE = os.getenv("BROWSER_PATH", "/usr/bin/chromium-browser")
MAX_CONTENT_LENGTH = int(os.getenv("MAX_CONTENT_LENGTH", 30000))
def __init__(self, headless=True):
self.user_agents = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64)...",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)..."
]
self.timeout = 45000
self.retry_count = int(os.getenv("RETRY_COUNT", 2))
self.headless = headless
self.proxy_servers = [x.strip() for x in os.getenv("PROXY_SERVERS", "").split(',') if x.strip()]
async def human_interaction(self, page):
for _ in range(random.randint(2, 5)):
x, y = random.randint(0, 1366), random.randint(0, 768)
await page.mouse.move(x, y, steps=random.randint(5, 20))
await page.wait_for_timeout(random.randint(50, 200))
if random.random() < 0.3:
await page.keyboard.press('Tab')
await page.keyboard.type(' ', delay=random.randint(50, 200))
await page.mouse.wheel(0, random.choice([300, 600, 900]))
await page.wait_for_timeout(random.randint(500, 2000))
async def load_page(self, page, url):
try:
await page.goto(url, wait_until="domcontentloaded", timeout=self.timeout)
selectors = ['main article', '#main-content', 'section:first-of-type', 'div[class*="content"]', 'body']
for selector in selectors:
if await page.query_selector(selector):
return True
await page.wait_for_timeout(5000)
return True
except Exception as e:
logging.error(f"Error loading page {url}: {e}")
return False
@SCRAPE_DURATION.time()
async def scrape_with_retry(self, url):
SCRAPE_ATTEMPTS.inc()
last_error = None
try:
async with async_playwright() as p:
args = {
"headless": self.headless,
"args": ["--disable-blink-features=AutomationControlled", "--no-sandbox"],
"executable_path": self.BROWSER_EXECUTABLE
}
browser = await p.chromium.launch(**args)
context = await browser.new_context(user_agent=random.choice(self.user_agents))
page = await context.new_page()
await page.add_init_script("""
Object.defineProperty(navigator, 'webdriver', { get: () => false });
""")
for attempt in range(self.retry_count):
try:
if not await self.load_page(page, url):
raise ScrapingError("Failed to load page")
await self.human_interaction(page)
content = await page.evaluate("""() => document.body.innerText""")
if not content.strip():
raise ContentAnalysisError("No content extracted")
await browser.close()
return content[:self.MAX_CONTENT_LENGTH]
except Exception as e:
last_error = e
if attempt < self.retry_count - 1:
await asyncio.sleep(5)
else:
await browser.close()
raise
except Exception as e:
raise last_error or e
async def get_cached_content(self, url):
key = 'cache_' + url.replace('https://', '').replace('/', '_')
content = cache.get(key)
if content is None:
content = await self.scrape_with_retry(url)
cache.set(key, content, expire=int(os.getenv("CACHE_EXPIRY", 3600)))
return content
async def analyze_content(url="https://openai.com", headless=True):
scraper = EnhancedOpenAIScraper(headless=headless)
content = await scraper.get_cached_content(url)
client = OpenAI(api_key=EnhancedOpenAIScraper.API_KEY)
if not client.api_key:
raise ContentAnalysisError("OpenAI API key not configured")
prompt = f"""
Analyze this page:
{content}
"""
model = os.getenv("OPENAI_MODEL", "gpt-4-turbo")
temperature = float(os.getenv("MODEL_TEMPERATURE", 0.3))
max_tokens = int(os.getenv("MAX_TOKENS", 1500))
top_p = float(os.getenv("MODEL_TOP_P", 0.9))
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a content analyst."},
{"role": "user", "content": prompt}
],
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p
)
if not response.choices:
raise ContentAnalysisError("Empty response from GPT")
return response.choices[0].message.content