File size: 4,328 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "23f53670-1a73-46ba-a754-4a497e8e0e64",
   "metadata": {},
   "source": [
    "# The Price is Right\n",
    "\n",
    "First we'll polish off 2 more simple agents:\n",
    "\n",
    "The **Messaging Agent** to send push notifications\n",
    "\n",
    "The **Planning Agent** to coordinate activities\n",
    "\n",
    "Then we'll put it all together into an Agent Framework.\n",
    "\n",
    "For the Push Notification, we will be using a nifty platform called Pushover.  \n",
    "You'll need to set up a free account and add 2 tokens to your `.env` file:\n",
    "\n",
    "```\n",
    "PUSHOVER_USER=xxx\n",
    "PUSHOVER_TOKEN=xxx\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "80d683d9-9e92-44ae-af87-a413ca84db21",
   "metadata": {},
   "outputs": [],
   "source": [
    "from dotenv import load_dotenv\n",
    "from agents.messaging_agent import MessagingAgent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5ba769cc-5301-4810-b01f-cab584cfb3b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "load_dotenv(override=True)\n",
    "DB = \"products_vectorstore\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e05cc427-3d2c-4792-ade1-d356f95a82a9",
   "metadata": {},
   "outputs": [],
   "source": [
    "agent = MessagingAgent()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5ec518f5-dae4-44b1-a185-d7eaf853ec00",
   "metadata": {},
   "outputs": [],
   "source": [
    "agent.push(\"MASSIVE NEWS!!!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7f2781ad-e122-4570-8fad-a2fe6452414e",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../resources.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#f71;\">Additional resource: more sophisticated planning agent</h2>\n",
    "            <span style=\"color:#f71;\">The Planning Agent that we use in the next cell is simply a python script that calls the other Agents; frankly that's all we require for this project. But if you're intrigued to see a more Autonomous version in which we give the Planning Agent tools and allow it to decide which Agents to call, see my implementation of <a href=\"https://github.com/ed-donner/agentic/blob/main/workshop/agents/autonomous_planning_agent.py\">AutonomousPlanningAgent</a> in my related repo, <a href=\"https://github.com/ed-donner/agentic\">Agentic</a>. This is an example with multiple tools that dynamically decides which function to call.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "57b3a014-0b15-425a-a29b-6fefc5006dee",
   "metadata": {},
   "outputs": [],
   "source": [
    "import chromadb\n",
    "DB = \"products_vectorstore\"\n",
    "client = chromadb.PersistentClient(path=DB)\n",
    "collection = client.get_or_create_collection('products')\n",
    "from agents.planning_agent import PlanningAgent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a5c31c39-e357-446e-9cec-b4775c298941",
   "metadata": {},
   "outputs": [],
   "source": [
    "planner = PlanningAgent(collection)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d9ac771b-ea12-41c0-a7ce-05f12e27ad9e",
   "metadata": {},
   "outputs": [],
   "source": [
    "planner.plan()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8dd94a70-3202-452b-9ef0-551d6feb159b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}