File size: 6,815 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "0df0d850-49eb-4a0b-a27a-146969db710d",
   "metadata": {},
   "source": [
    "# The Price is Right\n",
    "\n",
    "Today we'll build another piece of the puzzle: a ScanningAgent that looks for promising deals by subscribing to RSS feeds."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d3763a79-8a5a-4300-8de4-93e85475af10",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import json\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "from agents.deals import ScrapedDeal, DealSelection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c6469e32-16c3-4443-9475-ade710ef6933",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize and constants\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "MODEL = 'gpt-4o-mini'\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "afece9db-8cd4-46be-ac57-0b472e84da7d",
   "metadata": {},
   "outputs": [],
   "source": [
    "deals = ScrapedDeal.fetch(show_progress=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8cd15c4d-eb44-4601-bf0c-f945c1d8e3ec",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(deals)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4259f30a-6455-49ed-8863-2f9ddd4776cb",
   "metadata": {},
   "outputs": [],
   "source": [
    "deals[44].describe()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8100e5ac-38f5-40c1-a712-08ae12c85038",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = \"\"\"You identify and summarize the 5 most detailed deals from a list, by selecting deals that have the most detailed, high quality description and the most clear price.\n",
    "Respond strictly in JSON with no explanation, using this format. You should provide the price as a number derived from the description. If the price of a deal isn't clear, do not include that deal in your response.\n",
    "Most important is that you respond with the 5 deals that have the most detailed product description with price. It's not important to mention the terms of the deal; most important is a thorough description of the product.\n",
    "Be careful with products that are described as \"$XXX off\" or \"reduced by $XXX\" - this isn't the actual price of the product. Only respond with products when you are highly confident about the price. \n",
    "\n",
    "{\"deals\": [\n",
    "    {\n",
    "        \"product_description\": \"Your clearly expressed summary of the product in 4-5 sentences. Details of the item are much more important than why it's a good deal. Avoid mentioning discounts and coupons; focus on the item itself. There should be a paragpraph of text for each item you choose.\",\n",
    "        \"price\": 99.99,\n",
    "        \"url\": \"the url as provided\"\n",
    "    },\n",
    "    ...\n",
    "]}\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4bca170-af71-40c9-9597-1d72980c74d8",
   "metadata": {},
   "outputs": [],
   "source": [
    "user_prompt = \"\"\"Respond with the most promising 5 deals from this list, selecting those which have the most detailed, high quality product description and a clear price.\n",
    "Respond strictly in JSON, and only JSON. You should rephrase the description to be a summary of the product itself, not the terms of the deal.\n",
    "Remember to respond with a paragraph of text in the product_description field for each of the 5 items that you select.\n",
    "Be careful with products that are described as \"$XXX off\" or \"reduced by $XXX\" - this isn't the actual price of the product. Only respond with products when you are highly confident about the price. \n",
    "\n",
    "Deals:\n",
    "\n",
    "\"\"\"\n",
    "user_prompt += '\\n\\n'.join([deal.describe() for deal in deals])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "020947a6-561b-417b-98a0-a085e31d2ce3",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(user_prompt[:2000])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7de46f74-868c-4127-8a68-cf2da7d600bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_recommendations():\n",
    "    completion = openai.beta.chat.completions.parse(\n",
    "        model=\"gpt-4o-mini\",\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": system_prompt},\n",
    "            {\"role\": \"user\", \"content\": user_prompt}\n",
    "      ],\n",
    "        response_format=DealSelection\n",
    "    )\n",
    "    result = completion.choices[0].message.parsed\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4c06270d-8c17-4d5a-9cfe-b6cefe788d5e",
   "metadata": {},
   "outputs": [],
   "source": [
    "result = get_recommendations()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "84e62845-3338-441a-8161-c70097af4773",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(result.deals)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e5554a0a-ae40-4684-ad3e-faa3d22e030c",
   "metadata": {},
   "outputs": [],
   "source": [
    "result.deals[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8bdc57fb-7497-47af-a643-6ba5a21cc17e",
   "metadata": {},
   "outputs": [],
   "source": [
    "from agents.scanner_agent import ScannerAgent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "132278bc-217a-43a6-b6c4-724140c6a225",
   "metadata": {},
   "outputs": [],
   "source": [
    "agent = ScannerAgent()\n",
    "result = agent.scan()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2e1d013a-c930-4dad-901b-41433379e14b",
   "metadata": {},
   "outputs": [],
   "source": [
    "result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5ee2e837-1f1d-42d4-8bc4-51cccc343006",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}