Spaces:
Sleeping
Sleeping
File size: 10,865 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
{
"cells": [
{
"cell_type": "markdown",
"id": "046fd8f8-ad14-4c7f-b759-fec52f5b5306",
"metadata": {},
"source": [
"# The Price is Right\n",
"\n",
"Today we build a more complex solution for estimating prices of goods.\n",
"\n",
"1. This notebook: create a RAG database with our 400,000 training data\n",
"2. Day 2.1 notebook: visualize in 2D\n",
"3. Day 2.2 notebook: visualize in 3D\n",
"4. Day 2.3 notebook: build and test a RAG pipeline with GPT-4o-mini\n",
"5. Day 2.4 notebook: (a) bring back our Random Forest pricer (b) Create a Ensemble pricer that allows contributions from all the pricers\n",
"\n",
"Phew! That's a lot to get through in one day!\n",
"\n",
"## PLEASE NOTE:\n",
"\n",
"We already have a very powerful product estimator with our proprietary, fine-tuned LLM. Most people would be very satisfied with that! The main reason we're adding these extra steps is to deepen your expertise with RAG and with Agentic workflows.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "993a2a24-1a58-42be-8034-6d116fb8d786",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import re\n",
"import math\n",
"import json\n",
"from tqdm import tqdm\n",
"import random\n",
"from dotenv import load_dotenv\n",
"from huggingface_hub import login\n",
"import numpy as np\n",
"import pickle\n",
"from sentence_transformers import SentenceTransformer\n",
"from datasets import load_dataset\n",
"import chromadb\n",
"from items import Item\n",
"from sklearn.manifold import TSNE\n",
"import plotly.graph_objects as go"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2359ccc0-dbf2-4b1e-9473-e472b32f548b",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"\n",
"load_dotenv(override=True)\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')\n",
"DB = \"products_vectorstore\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "645167e6-cf0d-42d2-949f-1089a25a2841",
"metadata": {},
"outputs": [],
"source": [
"# Log in to HuggingFace\n",
"\n",
"hf_token = os.environ['HF_TOKEN']\n",
"login(hf_token, add_to_git_credential=True)"
]
},
{
"cell_type": "markdown",
"id": "3d4995a4-f67f-4871-87df-8c6439b06366",
"metadata": {},
"source": [
"## Back to the pkl files\n",
"\n",
"Much as we enjoyed data curating in week 6, we probably don't want to go through that whole process again!\n",
"\n",
"Let's reuse the pkl files we created then. Either copy the files `train.pkl` and `test.pkl` from the Week 6 folder into this Week 8 folder, or you can also download them from here:\n",
"\n",
"https://drive.google.com/drive/folders/1f_IZGybvs9o0J5sb3xmtTEQB3BXllzrW?usp=drive_link"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "688bd995-ec3e-43cd-8179-7fe14b275877",
"metadata": {},
"outputs": [],
"source": [
"# With train.pkl in this folder, you can run this:\n",
"\n",
"with open('train.pkl', 'rb') as file:\n",
" train = pickle.load(file)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2817eaf5-4302-4a18-9148-d1062e3b3dbb",
"metadata": {},
"outputs": [],
"source": [
"train[0].prompt"
]
},
{
"cell_type": "markdown",
"id": "9ae1ba16-7e80-4096-ac88-64ef8edcc80c",
"metadata": {},
"source": [
"# Now create a Chroma Datastore\n",
"\n",
"In Week 5, we created a Chroma datastore with 123 documents representing chunks of objects from our fictional company Insurellm.\n",
"\n",
"Now we will create a Chroma datastore with 400,000 products from our training dataset! It's getting real!\n",
"\n",
"Note that we won't be using LangChain, but the API is very straightforward and consistent with before.\n",
"\n",
"Special note: if Chroma crashes and you're a Windows user, you should try rolling back to an earlier version of the Chroma library with: \n",
"`!pip install chromadb==0.5.0` \n",
"With many thanks to student Kelly Z. for finding this out and pointing to the GitHub issue [here](https://github.com/chroma-core/chroma/issues/2513). \n",
"But try first without reverting Chroma."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4aab95e-d719-4476-b6e7-e248120df25a",
"metadata": {},
"outputs": [],
"source": [
"client = chromadb.PersistentClient(path=DB)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5f95dafd-ab80-464e-ba8a-dec7a2424780",
"metadata": {},
"outputs": [],
"source": [
"# Check if the collection exists and delete it if it does\n",
"collection_name = \"products\"\n",
"\n",
"# For old versions of Chroma, use this line instead of the subsequent one\n",
"# existing_collection_names = [collection.name for collection in client.list_collections()]\n",
"existing_collection_names = client.list_collections()\n",
"\n",
"if collection_name in existing_collection_names:\n",
" client.delete_collection(collection_name)\n",
" print(f\"Deleted existing collection: {collection_name}\")\n",
"\n",
"collection = client.create_collection(collection_name)"
]
},
{
"cell_type": "markdown",
"id": "d392ed28-203d-4e73-be87-ac1390bdf722",
"metadata": {},
"source": [
"# Introducing the SentenceTransfomer\n",
"\n",
"The all-MiniLM is a very useful model from HuggingFace that maps sentences & paragraphs to a 384 dimensional dense vector space and is ideal for tasks like semantic search.\n",
"\n",
"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2\n",
"\n",
"It can run pretty quickly locally.\n",
"\n",
"Last time we used OpenAI embeddings to produce vector embeddings. Benefits compared to OpenAI embeddings:\n",
"1. It's free and fast!\n",
"3. We can run it locally, so the data never leaves our box - might be useful if you're building a personal RAG\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a87db200-d19d-44bf-acbd-15c45c70f5c9",
"metadata": {},
"outputs": [],
"source": [
"model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9b23a025-4c35-4d3a-96ad-b956cad37b0a",
"metadata": {},
"outputs": [],
"source": [
"# Pass in a list of texts, get back a numpy array of vectors\n",
"\n",
"vector = model.encode([\"Well hi there\"])[0]\n",
"vector"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8adde63f-e732-4f7c-bba9-f8b2a469f14e",
"metadata": {},
"outputs": [],
"source": [
"# Quick sidebar - extra to the videos - a function to compare vectors\n",
"\n",
"import numpy as np\n",
"def cosine_similarity(a, b):\n",
" return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))\n",
"\n",
"def how_similar(text1, text2):\n",
" vector1, vector2 = model.encode([text1, text2])\n",
" similarity = cosine_similarity(vector1, vector2)\n",
" print(f\"Similarity between {text1} and {text2} is {similarity*100:.1f}%\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f9c8d19-6993-42e7-afd6-4c61ffc19419",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# And let's see how adding a few words to the context can change things up!\n",
"\n",
"how_similar(\"Java\", \"C++\")\n",
"how_similar(\"Java\", \"mug\")\n",
"how_similar(\"Cup of Java\", \"mug\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "38de1bf8-c9b5-45b4-9f4b-86af93b3f80d",
"metadata": {},
"outputs": [],
"source": [
"# OK back to the main story - let's make something we can vectorize\n",
"\n",
"def description(item):\n",
" text = item.prompt.replace(\"How much does this cost to the nearest dollar?\\n\\n\", \"\")\n",
" return text.split(\"\\n\\nPrice is $\")[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8c1205bd-4692-44ef-8ea4-69f255354537",
"metadata": {},
"outputs": [],
"source": [
"description(train[0])"
]
},
{
"cell_type": "markdown",
"id": "16b4ef1f-c696-4a01-b011-00fbccbc1a56",
"metadata": {},
"source": [
"## Now we populate our RAG datastore\n",
"\n",
"The next cell populates the 400,000 items in Chroma.\n",
"\n",
"Feel free to reduce the number of documents if this takes too long! You can change to: \n",
"`NUMBER_OF_DOCUMENTS = 20000` \n",
"And that's plenty for a perfectly good RAG pipeline.\n",
"\n",
"Just note that if you interrupt the below cell while it's running, you might need to clear out the Chroma datastore (by rerunning the earlier cell that deletes the collection), before you run it again. Otherwise it will complain that there are existing documents with the same ID."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8c79e2fe-1f50-4ebf-9a93-34f3088f2996",
"metadata": {},
"outputs": [],
"source": [
"NUMBER_OF_DOCUMENTS = len(train)\n",
"\n",
"# Uncomment if you'd rather not wait for the full 400,000\n",
"# NUMBER_OF_DOCUMENTS = 20000\n",
"\n",
"for i in tqdm(range(0, NUMBER_OF_DOCUMENTS, 1000)):\n",
" documents = [description(item) for item in train[i: i+1000]]\n",
" vectors = model.encode(documents).astype(float).tolist()\n",
" metadatas = [{\"category\": item.category, \"price\": item.price} for item in train[i: i+1000]]\n",
" ids = [f\"doc_{j}\" for j in range(i, i+len(documents))]\n",
" collection.add(\n",
" ids=ids,\n",
" documents=documents,\n",
" embeddings=vectors,\n",
" metadatas=metadatas\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f04f1b20-05ed-461d-b728-d7729125502a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|