Spaces:
Sleeping
Sleeping
File size: 12,346 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
{
"cells": [
{
"cell_type": "markdown",
"id": "28a0673e-96b5-43f2-8a8b-bd033bf851b0",
"metadata": {},
"source": [
"# The Product Pricer Continued\n",
"\n",
"A model that can estimate how much something costs, from its description.\n",
"\n",
"## Data Curation Part 2\n",
"\n",
"Today we'll extend our dataset to a greater coverage, and craft it into an excellent dataset for training.\n",
"\n",
"The dataset is here: \n",
"https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023\n",
"\n",
"And the folder with all the product datasets is here: \n",
"https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023/tree/main/raw/meta_categories\n",
"\n",
"## The Lite dataset\n",
"\n",
"This notebook is an alternative to `day2.ipynb` that creates a smaller dataset for Home Appliances only, to keep training fast and costs low. You may need to update names of future notebooks to reflect that you have built the \"lite\" dataset not the full dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "67cedf85-8125-4322-998e-9375fe745597",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import random\n",
"from dotenv import load_dotenv\n",
"from huggingface_hub import login\n",
"from datasets import load_dataset, Dataset, DatasetDict\n",
"import matplotlib.pyplot as plt\n",
"from collections import Counter, defaultdict\n",
"import numpy as np\n",
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7390a6aa-79cb-4dea-b6d7-de7e4b13e472",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"\n",
"load_dotenv()\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0732274a-aa6a-44fc-aee2-40dc8a8e4451",
"metadata": {},
"outputs": [],
"source": [
"# Log in to HuggingFace\n",
"\n",
"hf_token = os.environ['HF_TOKEN']\n",
"login(hf_token, add_to_git_credential=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "767081df-ee34-4309-ab4c-46d62b4ae367",
"metadata": {},
"outputs": [],
"source": [
"# And some more imports - with thanks to Alex C for pointing out that I need to do these after the HF login..\n",
"\n",
"from items import Item\n",
"from loaders import ItemLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1adcf323-de9d-4c24-a9c3-d7ae554d06ca",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"id": "01065d69-765c-42c8-9f90-68b8c8754068",
"metadata": {},
"source": [
"## The ItemLoader code\n",
"\n",
"Look in loaders.py - there's some useful code to make life easier for us"
]
},
{
"cell_type": "markdown",
"id": "e2b6dc50-ac5c-4cf2-af2e-968ed8ef86d7",
"metadata": {},
"source": [
"## Now to SCALE UP\n",
"\n",
"Let's look at all datasets of all the items that you might find in a large home retail store - electrical, electronic, office and related, but not clothes / beauty / books."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1d06cd3-f3c2-44f0-a9f2-13b54ff8be5c",
"metadata": {},
"outputs": [],
"source": [
"dataset_names = [\n",
" # \"Automotive\",\n",
" # \"Electronics\",\n",
" # \"Office_Products\",\n",
" # \"Tools_and_Home_Improvement\",\n",
" # \"Cell_Phones_and_Accessories\",\n",
" # \"Toys_and_Games\",\n",
" \"Appliances\",\n",
" # \"Musical_Instruments\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aa8fd0f0-509a-4298-8fcc-e499a061e1be",
"metadata": {},
"outputs": [],
"source": [
"items = []\n",
"for dataset_name in dataset_names:\n",
" loader = ItemLoader(dataset_name)\n",
" items.extend(loader.load())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3e29a5ab-ca61-41cc-9b33-22d374681b85",
"metadata": {},
"outputs": [],
"source": [
"print(f\"A grand total of {len(items):,} items\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "89078cb1-9679-4eb0-b295-599b8586bcd1",
"metadata": {},
"outputs": [],
"source": [
"# Plot the distribution of token counts again\n",
"\n",
"tokens = [item.token_count for item in items]\n",
"plt.figure(figsize=(15, 6))\n",
"plt.title(f\"Token counts: Avg {sum(tokens)/len(tokens):,.1f} and highest {max(tokens):,}\\n\")\n",
"plt.xlabel('Length (tokens)')\n",
"plt.ylabel('Count')\n",
"plt.hist(tokens, rwidth=0.7, color=\"skyblue\", bins=range(0, 300, 10))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c38e0c43-9f7a-450e-a911-c94d37d9b9c3",
"metadata": {},
"outputs": [],
"source": [
"# Plot the distribution of prices\n",
"\n",
"prices = [item.price for item in items]\n",
"plt.figure(figsize=(15, 6))\n",
"plt.title(f\"Prices: Avg {sum(prices)/len(prices):,.1f} and highest {max(prices):,}\\n\")\n",
"plt.xlabel('Price ($)')\n",
"plt.ylabel('Count')\n",
"plt.hist(prices, rwidth=0.7, color=\"blueviolet\", bins=range(0, 1000, 10))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "ac046cc1-2717-415b-96ad-b73b2950d235",
"metadata": {},
"source": [
"# Dataset Curated!\n",
"\n",
"We've crafted an excellent dataset.\n",
"\n",
"Let's do some final checks"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "70219e99-22cc-4e08-9121-51f9707caef0",
"metadata": {},
"outputs": [],
"source": [
"# How does the price vary with the character count of the prompt?\n",
"\n",
"sample = items\n",
"\n",
"sizes = [len(item.prompt) for item in sample]\n",
"prices = [item.price for item in sample]\n",
"\n",
"# Create the scatter plot\n",
"plt.figure(figsize=(15, 8))\n",
"plt.scatter(sizes, prices, s=0.2, color=\"red\")\n",
"\n",
"# Add labels and title\n",
"plt.xlabel('Size')\n",
"plt.ylabel('Price')\n",
"plt.title('Is there a simple correlation?')\n",
"\n",
"# Display the plot\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "30ae1453-b9fc-40db-8310-65d850c4b1da",
"metadata": {},
"outputs": [],
"source": [
"def report(item):\n",
" prompt = item.prompt\n",
" tokens = Item.tokenizer.encode(item.prompt)\n",
" print(prompt)\n",
" print(tokens[-10:])\n",
" print(Item.tokenizer.batch_decode(tokens[-10:]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9998b8d-d746-4541-9ac2-701108e0e8fb",
"metadata": {},
"outputs": [],
"source": [
"report(sample[50])"
]
},
{
"cell_type": "markdown",
"id": "7aa0a3fc-d2fe-4e6e-8fdb-96913df2f588",
"metadata": {},
"source": [
"## Observation\n",
"\n",
"An interesting thing about the Llama tokenizer is that every number from 1 to 999 gets mapped to 1 token, much as we saw with gpt-4o. The same is not true of qwen2, gemma and phi3, which all map individual digits to tokens. This does turn out to be a bit useful for our project, although it's not an essential requirement."
]
},
{
"cell_type": "markdown",
"id": "0f03c0ee-3103-4603-af5c-b484884a3aa2",
"metadata": {},
"source": [
"# Finally\n",
"\n",
"It's time to break down our data into a training, test and validation dataset.\n",
"\n",
"It's typical to use 5%-10% of your data for testing purposes, but actually we have far more than we need at this point. We'll take 25,000 points for training, and we'll reserve 2,000 for testing, although we won't use all of them.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b163ca2-18ef-4c26-8e9d-88eb55f114f6",
"metadata": {},
"outputs": [],
"source": [
"random.seed(42)\n",
"random.shuffle(sample)\n",
"train = sample[:25_000]\n",
"test = sample[25_000:27_000]\n",
"print(f\"Divided into a training set of {len(train):,} items and test set of {len(test):,} items\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "299b9816-8885-4798-829a-69d66d60eb01",
"metadata": {},
"outputs": [],
"source": [
"print(train[0].prompt)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97222da3-9f2c-4d15-a5cd-5e5f8dbde6cc",
"metadata": {},
"outputs": [],
"source": [
"print(test[0].test_prompt())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a116369-335a-412b-b70c-2add6675c2e3",
"metadata": {},
"outputs": [],
"source": [
"# Plot the distribution of prices in the first 250 test points\n",
"\n",
"prices = [float(item.price) for item in test[:250]]\n",
"plt.figure(figsize=(15, 6))\n",
"plt.title(f\"Avg {sum(prices)/len(prices):.2f} and highest {max(prices):,.2f}\\n\")\n",
"plt.xlabel('Price ($)')\n",
"plt.ylabel('Count')\n",
"plt.hist(prices, rwidth=0.7, color=\"darkblue\", bins=range(0, 1000, 10))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "d522d752-6f66-4786-a4dc-8ef51842558c",
"metadata": {},
"source": [
"# Finally - upload your brand new dataset\n",
"\n",
"Convert to prompts and upload to HuggingFace hub"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa11b3e5-fcf4-4efc-a573-f6f67fec3e73",
"metadata": {},
"outputs": [],
"source": [
"train_prompts = [item.prompt for item in train]\n",
"train_prices = [item.price for item in train]\n",
"test_prompts = [item.test_prompt() for item in test]\n",
"test_prices = [item.price for item in test]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b020ab1b-7153-4e5f-b8a3-d5bc2fafb6df",
"metadata": {},
"outputs": [],
"source": [
"# Create a Dataset from the lists\n",
"\n",
"train_dataset = Dataset.from_dict({\"text\": train_prompts, \"price\": train_prices})\n",
"test_dataset = Dataset.from_dict({\"text\": test_prompts, \"price\": test_prices})\n",
"dataset = DatasetDict({\n",
" \"train\": train_dataset,\n",
" \"test\": test_dataset\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "17639641-fb55-44e2-a463-b0b394d00f32",
"metadata": {},
"outputs": [],
"source": [
"DATASET_NAME = \"ed-donner/lite-data\"\n",
"dataset.push_to_hub(DATASET_NAME, private=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b85733ba-d165-4f07-b055-46803543edfe",
"metadata": {},
"outputs": [],
"source": [
"# One more thing!\n",
"# Let's pickle the training and test dataset so we don't have to execute all this code next time!\n",
"\n",
"with open('train_lite.pkl', 'wb') as file:\n",
" pickle.dump(train, file)\n",
"\n",
"with open('test_lite.pkl', 'wb') as file:\n",
" pickle.dump(test, file)"
]
},
{
"cell_type": "markdown",
"id": "2b58dc61-747f-46f7-b9e0-c205db4f3e5e",
"metadata": {},
"source": [
"## Todos for you:\n",
"\n",
"- Investigate the dataset more!\n",
"- Confirm that the tokenizer tokenizes all 3 digit prices into 1 token"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|