File size: 11,030 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "db8736a7-ed94-441c-9556-831fa57b5a10",
   "metadata": {},
   "source": [
    "# The Product Pricer Continued\n",
    "\n",
    "A model that can estimate how much something costs, from its description.\n",
    "\n",
    "## Enter The Frontier!\n",
    "\n",
    "And now - we put Frontier Models to the test.\n",
    "\n",
    "### 2 important points:\n",
    "\n",
    "It's important to appreciate that we aren't Training the frontier models. We're only providing them with the Test dataset to see how they perform. They don't gain the benefit of the 400,000 training examples that we provided to the Traditional ML models.\n",
    "\n",
    "HAVING SAID THAT...\n",
    "\n",
    "It's entirely possible that in their monstrously large training data, they've already been exposed to all the products in the training AND the test set. So there could be test \"contamination\" here which gives them an unfair advantage. We should keep that in mind."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "681c717b-4c24-4ac3-a5f3-3c5881d6e70a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import re\n",
    "import math\n",
    "import json\n",
    "import random\n",
    "from dotenv import load_dotenv\n",
    "from huggingface_hub import login\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import pickle\n",
    "from collections import Counter\n",
    "from openai import OpenAI\n",
    "from anthropic import Anthropic"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "36d05bdc-0155-4c72-a7ee-aa4e614ffd3c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# environment\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4dd3aad2-6f99-433c-8792-e461d2f06622",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Log in to HuggingFace\n",
    "\n",
    "hf_token = os.environ['HF_TOKEN']\n",
    "login(hf_token, add_to_git_credential=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6985bdc7-fa45-49a3-ae97-84bdeb9b2083",
   "metadata": {},
   "outputs": [],
   "source": [
    "# moved our Tester into a separate package\n",
    "# call it with Tester.test(function_name, test_dataset)\n",
    "\n",
    "from items import Item\n",
    "from testing import Tester"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b0a6fb86-74a4-403c-ab25-6db2d74e9d2b",
   "metadata": {},
   "outputs": [],
   "source": [
    "openai = OpenAI()\n",
    "claude = Anthropic()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c830ed3e-24ee-4af6-a07b-a1bfdcd39278",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5c9b05f4-c9eb-462c-8d86-de9140a2d985",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's avoid curating all our data again! Load in the pickle files:\n",
    "\n",
    "with open('train.pkl', 'rb') as file:\n",
    "    train = pickle.load(file)\n",
    "\n",
    "with open('test.pkl', 'rb') as file:\n",
    "    test = pickle.load(file)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e5856173-e68c-4975-a769-5f1736e227a5",
   "metadata": {},
   "source": [
    "# Before we look at the Frontier\n",
    "\n",
    "## There is one more model we could consider"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f3e81ee0-828a-4af8-9ccf-177af6c78a0c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Write the test set to a CSV\n",
    "\n",
    "import csv\n",
    "with open('human_input.csv', 'w', encoding=\"utf-8\") as csvfile:\n",
    "    writer = csv.writer(csvfile)\n",
    "    for t in test[:250]:\n",
    "        writer.writerow([t.test_prompt(), 0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aeafac31-1a10-4029-b190-030378e2fe01",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read it back in\n",
    "\n",
    "human_predictions = []\n",
    "with open('human_output.csv', 'r', encoding=\"utf-8\") as csvfile:\n",
    "    reader = csv.reader(csvfile)\n",
    "    for row in reader:\n",
    "        human_predictions.append(float(row[1]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a9709da2-28f0-419e-af71-4ef6c02246ad",
   "metadata": {},
   "outputs": [],
   "source": [
    "def human_pricer(item):\n",
    "    idx = test.index(item)\n",
    "    return human_predictions[idx]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e1ba3b3e-4b08-4f0b-9e51-ebb03a86085d",
   "metadata": {},
   "outputs": [],
   "source": [
    "Tester.test(human_pricer, test)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "066fef03-8338-4526-9df3-89b649ad4f0a",
   "metadata": {},
   "source": [
    "## First, the humble but mighty GPT-4o-mini\n",
    "\n",
    "It's called mini, but it packs a punch."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "66ea68e8-ab1b-4f0d-aba4-a59574d8f85e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# First let's work on a good prompt for a Frontier model\n",
    "# Notice that I'm removing the \" to the nearest dollar\"\n",
    "# When we train our own models, we'll need to make the problem as easy as possible, \n",
    "# but a Frontier model needs no such simplification.\n",
    "\n",
    "def messages_for(item):\n",
    "    system_message = \"You estimate prices of items. Reply only with the price, no explanation\"\n",
    "    user_prompt = item.test_prompt().replace(\" to the nearest dollar\",\"\").replace(\"\\n\\nPrice is $\",\"\")\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_message},\n",
    "        {\"role\": \"user\", \"content\": user_prompt},\n",
    "        {\"role\": \"assistant\", \"content\": \"Price is $\"}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "add7bc0a-71fb-49cc-a49b-9548fd0fe949",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ff92d61-0d27-4b0d-8b32-c9891016509b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Try this out\n",
    "\n",
    "messages_for(test[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b1af1888-f94a-4106-b0d8-8a70939eec4e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A utility function to extract the price from a string\n",
    "\n",
    "def get_price(s):\n",
    "    s = s.replace('$','').replace(',','')\n",
    "    match = re.search(r\"[-+]?\\d*\\.\\d+|\\d+\", s)\n",
    "    return float(match.group()) if match else 0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f138c5b7-bcc1-4085-aced-68dad1bf36b4",
   "metadata": {},
   "outputs": [],
   "source": [
    "get_price(\"The price is roughly $99.99 because blah blah\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "501a2a7a-69c8-451b-bbc0-398bcb9e1612",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The function for gpt-4o-mini\n",
    "\n",
    "def gpt_4o_mini(item):\n",
    "    response = openai.chat.completions.create(\n",
    "        model=\"gpt-4o-mini\", \n",
    "        messages=messages_for(item),\n",
    "        seed=42,\n",
    "        max_tokens=5\n",
    "    )\n",
    "    reply = response.choices[0].message.content\n",
    "    return get_price(reply)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "843d88b4-364a-431b-b48b-8a7c1f68b786",
   "metadata": {},
   "outputs": [],
   "source": [
    "test[0].price"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "36bdd2c9-1859-4f99-a09f-3ec83b845b30",
   "metadata": {},
   "outputs": [],
   "source": [
    "Tester.test(gpt_4o_mini, test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f49e90d6-6749-4eb8-9347-5922b189d379",
   "metadata": {},
   "outputs": [],
   "source": [
    "def gpt_4o_frontier(item):\n",
    "    response = openai.chat.completions.create(\n",
    "        model=\"gpt-4o-2024-08-06\", \n",
    "        messages=messages_for(item),\n",
    "        seed=42,\n",
    "        max_tokens=5\n",
    "    )\n",
    "    reply = response.choices[0].message.content\n",
    "    return get_price(reply)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "766e697e-55bf-4521-b301-3b07d20045e0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The function for gpt-4o - the August model\n",
    "# Note that it cost me about 1-2 cents to run this (pricing may vary by region)\n",
    "# You can skip this and look at my results instead\n",
    "\n",
    "Tester.test(gpt_4o_frontier, test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "53d941cb-5b73-44ea-b893-3a0ce9997066",
   "metadata": {},
   "outputs": [],
   "source": [
    "def claude_3_point_5_sonnet(item):\n",
    "    messages = messages_for(item)\n",
    "    system_message = messages[0]['content']\n",
    "    messages = messages[1:]\n",
    "    response = claude.messages.create(\n",
    "        model=\"claude-3-5-sonnet-20240620\",\n",
    "        max_tokens=5,\n",
    "        system=system_message,\n",
    "        messages=messages\n",
    "    )\n",
    "    reply = response.content[0].text\n",
    "    return get_price(reply)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "11dba25d-f562-40f9-9855-40b715b7fc86",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The function for Claude 3.5 Sonnet\n",
    "# It also cost me about 1-2 cents to run this (pricing may vary by region)\n",
    "# You can skip this and look at my results instead\n",
    "\n",
    "Tester.test(claude_3_point_5_sonnet, test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "77428dfb-d8f4-4477-8265-77b4b0badd39",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}