File size: 19,423 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "28a0673e-96b5-43f2-8a8b-bd033bf851b0",
   "metadata": {},
   "source": [
    "# The Product Pricer Continued\n",
    "\n",
    "A model that can estimate how much something costs, from its description.\n",
    "\n",
    "## Data Curation Part 2\n",
    "\n",
    "Today we'll extend our dataset to a greater coverage, and craft it into an excellent dataset for training.  \n",
    "Data curation can seem less exciting than other things we work on, but it's a crucial part of the LLM engineers' responsibility and an important craft to hone, so that you can build your own commercial solutions with high quality datasets.\n",
    "\n",
    "The dataset is here:  \n",
    "https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023\n",
    "\n",
    "And the folder with all the product datasets is here:  \n",
    "https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023/tree/main/raw/meta_categories\n",
    "\n",
    "## Important Note - read me first please\n",
    "\n",
    "We are about to craft a massive dataset of 400,000 items covering multiple types of product. In Week 7 we will be using this data to train our own model. It's a pretty big dataset, and depending on the GPU you select, training could take 20+ hours. It will be really good fun, but it could cost a few dollars in compute units.\n",
    "\n",
    "As an alternative, if you want to keep things quick & low cost, you can work with a smaller dataset focused only on Home Appliances. You'll be able to cover the same learning points; the results will be good -- not quite as good as the full dataset, but still pretty amazing! If you'd prefer to do this, I've set up an alternative jupyter notebook in this folder called `lite.ipynb` that you should use in place of this one.\n",
    "\n",
    "Also, if you'd prefer, you can shortcut running all this data curation by downloading the pickle files that we save in the last cell. The pickle files are available here: https://drive.google.com/drive/folders/1f_IZGybvs9o0J5sb3xmtTEQB3BXllzrW"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "67cedf85-8125-4322-998e-9375fe745597",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import random\n",
    "from dotenv import load_dotenv\n",
    "from huggingface_hub import login\n",
    "from datasets import load_dataset, Dataset, DatasetDict\n",
    "import matplotlib.pyplot as plt\n",
    "from collections import Counter, defaultdict\n",
    "import numpy as np\n",
    "import pickle"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7390a6aa-79cb-4dea-b6d7-de7e4b13e472",
   "metadata": {},
   "outputs": [],
   "source": [
    "# environment\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0732274a-aa6a-44fc-aee2-40dc8a8e4451",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Log in to HuggingFace\n",
    "\n",
    "hf_token = os.environ['HF_TOKEN']\n",
    "login(hf_token, add_to_git_credential=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6746144c-2e19-485a-8086-368c144722b4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# More imports after HF login\n",
    "\n",
    "from loaders import ItemLoader\n",
    "from items import Item"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1adcf323-de9d-4c24-a9c3-d7ae554d06ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "01065d69-765c-42c8-9f90-68b8c8754068",
   "metadata": {},
   "source": [
    "## The ItemLoader code\n",
    "\n",
    "Look in loaders.py - there's some useful code to make life easier for us"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "049885d4-fdfa-4ff0-a932-4a2ed73928e2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load in the same dataset as last time\n",
    "\n",
    "items = ItemLoader(\"Appliances\").load()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ffba41b5-ddb6-4359-9790-9b2db900eee1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Look for a familiar item..\n",
    "print(items[1].prompt)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e2b6dc50-ac5c-4cf2-af2e-968ed8ef86d7",
   "metadata": {},
   "source": [
    "## Now to SCALE UP\n",
    "\n",
    "Let's look at all datasets of all the items that you might find in a large home retail store - electrical, electronic, office and related, but not clothes / beauty / books."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d1d06cd3-f3c2-44f0-a9f2-13b54ff8be5c",
   "metadata": {},
   "outputs": [],
   "source": [
    "dataset_names = [\n",
    "    \"Automotive\",\n",
    "    \"Electronics\",\n",
    "    \"Office_Products\",\n",
    "    \"Tools_and_Home_Improvement\",\n",
    "    \"Cell_Phones_and_Accessories\",\n",
    "    \"Toys_and_Games\",\n",
    "    \"Appliances\",\n",
    "    \"Musical_Instruments\",\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aa8fd0f0-509a-4298-8fcc-e499a061e1be",
   "metadata": {},
   "outputs": [],
   "source": [
    "items = []\n",
    "for dataset_name in dataset_names:\n",
    "    loader = ItemLoader(dataset_name)\n",
    "    items.extend(loader.load())\n",
    "\n",
    "# Now, time for a coffee break!!\n",
    "# By the way, I put the biggest datasets first.. it gets faster."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3e29a5ab-ca61-41cc-9b33-22d374681b85",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(f\"A grand total of {len(items):,} items\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "89078cb1-9679-4eb0-b295-599b8586bcd1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Plot the distribution of token counts again\n",
    "\n",
    "tokens = [item.token_count for item in items]\n",
    "plt.figure(figsize=(15, 6))\n",
    "plt.title(f\"Token counts: Avg {sum(tokens)/len(tokens):,.1f} and highest {max(tokens):,}\\n\")\n",
    "plt.xlabel('Length (tokens)')\n",
    "plt.ylabel('Count')\n",
    "plt.hist(tokens, rwidth=0.7, color=\"skyblue\", bins=range(0, 300, 10))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c38e0c43-9f7a-450e-a911-c94d37d9b9c3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Plot the distribution of prices\n",
    "\n",
    "prices = [item.price for item in items]\n",
    "plt.figure(figsize=(15, 6))\n",
    "plt.title(f\"Prices: Avg {sum(prices)/len(prices):,.1f} and highest {max(prices):,}\\n\")\n",
    "plt.xlabel('Price ($)')\n",
    "plt.ylabel('Count')\n",
    "plt.hist(prices, rwidth=0.7, color=\"blueviolet\", bins=range(0, 1000, 10))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eabc7c61-0cd2-41f4-baa1-b85400bbf87f",
   "metadata": {},
   "outputs": [],
   "source": [
    "category_counts = Counter()\n",
    "for item in items:\n",
    "    category_counts[item.category]+=1\n",
    "\n",
    "categories = category_counts.keys()\n",
    "counts = [category_counts[category] for category in categories]\n",
    "\n",
    "# Bar chart by category\n",
    "plt.figure(figsize=(15, 6))\n",
    "plt.bar(categories, counts, color=\"goldenrod\")\n",
    "plt.title('How many in each category')\n",
    "plt.xlabel('Categories')\n",
    "plt.ylabel('Count')\n",
    "\n",
    "plt.xticks(rotation=30, ha='right')\n",
    "\n",
    "# Add value labels on top of each bar\n",
    "for i, v in enumerate(counts):\n",
    "    plt.text(i, v, f\"{v:,}\", ha='center', va='bottom')\n",
    "\n",
    "# Display the chart\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e5b6e987-83ba-4262-a082-57c6b0741062",
   "metadata": {},
   "source": [
    "# Objective\n",
    "\n",
    "Craft a dataset which is more balanced in terms of prices. Less heavily scewed to cheap items, with an average that's higher than $60. Try to balance out the categories - fewer Automotive items."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3b9424c1-44e0-499a-b45e-a35246655469",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a dict with a key of each price from $1 to $999\n",
    "# And in the value, put a list of items with that price (to nearest round number)\n",
    "\n",
    "slots = defaultdict(list)\n",
    "for item in items:\n",
    "    slots[round(item.price)].append(item)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7805a7f1-4ad8-48f6-bea3-d64b64894804",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a dataset called \"sample\" which tries to more evenly take from the range of prices\n",
    "# And gives more weight to items from categories other than Automotive\n",
    "# Set random seed for reproducibility\n",
    "\n",
    "np.random.seed(42)\n",
    "random.seed(42)\n",
    "sample = []\n",
    "for i in range(1, 1000):\n",
    "    slot = slots[i]\n",
    "    if i>=240:\n",
    "        sample.extend(slot)\n",
    "    elif len(slot) <= 1200:\n",
    "        sample.extend(slot)\n",
    "    else:\n",
    "        weights = np.array([1 if item.category=='Automotive' else 5 for item in slot])\n",
    "        weights = weights / np.sum(weights)\n",
    "        selected_indices = np.random.choice(len(slot), size=1200, replace=False, p=weights)\n",
    "        selected = [slot[i] for i in selected_indices]\n",
    "        sample.extend(selected)\n",
    "\n",
    "print(f\"There are {len(sample):,} items in the sample\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "430b432f-b769-41da-9506-a238cb5cf1b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Plot the distribution of prices in sample\n",
    "\n",
    "prices = [float(item.price) for item in sample]\n",
    "plt.figure(figsize=(15, 10))\n",
    "plt.title(f\"Avg {sum(prices)/len(prices):.2f} and highest {max(prices):,.2f}\\n\")\n",
    "plt.xlabel('Price ($)')\n",
    "plt.ylabel('Count')\n",
    "plt.hist(prices, rwidth=0.7, color=\"darkblue\", bins=range(0, 1000, 10))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0d570794-6f1d-462e-b567-a46bae3556a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# OK, we did well in terms of raising the average price and having a smooth-ish population of prices\n",
    "# Let's see the categories\n",
    "\n",
    "category_counts = Counter()\n",
    "for item in sample:\n",
    "    category_counts[item.category]+=1\n",
    "\n",
    "categories = category_counts.keys()\n",
    "counts = [category_counts[category] for category in categories]\n",
    "\n",
    "# Create bar chart\n",
    "plt.figure(figsize=(15, 6))\n",
    "plt.bar(categories, counts, color=\"lightgreen\")\n",
    "\n",
    "# Customize the chart\n",
    "plt.title('How many in each category')\n",
    "plt.xlabel('Categories')\n",
    "plt.ylabel('Count')\n",
    "\n",
    "plt.xticks(rotation=30, ha='right')\n",
    "\n",
    "# Add value labels on top of each bar\n",
    "for i, v in enumerate(counts):\n",
    "    plt.text(i, v, f\"{v:,}\", ha='center', va='bottom')\n",
    "\n",
    "# Display the chart\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6609d77c-3e0a-4679-9129-c7cdc3273070",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Automotive still in the lead, but improved somewhat\n",
    "# For another perspective, let's look at a pie\n",
    "\n",
    "plt.figure(figsize=(12, 10))\n",
    "plt.pie(counts, labels=categories, autopct='%1.0f%%', startangle=90)\n",
    "\n",
    "# Add a circle at the center to create a donut chart (optional)\n",
    "centre_circle = plt.Circle((0,0), 0.70, fc='white')\n",
    "fig = plt.gcf()\n",
    "fig.gca().add_artist(centre_circle)\n",
    "plt.title('Categories')\n",
    "\n",
    "# Equal aspect ratio ensures that pie is drawn as a circle\n",
    "plt.axis('equal')  \n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ac046cc1-2717-415b-96ad-b73b2950d235",
   "metadata": {},
   "source": [
    "# Dataset Curated!\n",
    "\n",
    "We've crafted an excellent dataset.\n",
    "\n",
    "Let's do some final checks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "70219e99-22cc-4e08-9121-51f9707caef0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# How does the price vary with the character count of the prompt?\n",
    "\n",
    "sizes = [len(item.prompt) for item in sample]\n",
    "prices = [item.price for item in sample]\n",
    "\n",
    "# Create the scatter plot\n",
    "plt.figure(figsize=(15, 8))\n",
    "plt.scatter(sizes, prices, s=0.2, color=\"red\")\n",
    "\n",
    "# Add labels and title\n",
    "plt.xlabel('Size')\n",
    "plt.ylabel('Price')\n",
    "plt.title('Is there a simple correlation?')\n",
    "\n",
    "# Display the plot\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "30ae1453-b9fc-40db-8310-65d850c4b1da",
   "metadata": {},
   "outputs": [],
   "source": [
    "def report(item):\n",
    "    prompt = item.prompt\n",
    "    tokens = Item.tokenizer.encode(item.prompt)\n",
    "    print(prompt)\n",
    "    print(tokens[-10:])\n",
    "    print(Item.tokenizer.batch_decode(tokens[-10:]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d9998b8d-d746-4541-9ac2-701108e0e8fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "report(sample[398000])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7aa0a3fc-d2fe-4e6e-8fdb-96913df2f588",
   "metadata": {},
   "source": [
    "## Observation\n",
    "\n",
    "An interesting thing about the Llama tokenizer is that every number from 1 to 999 gets mapped to 1 token, much as we saw with gpt-4o. The same is not true of qwen2, gemma and phi3, which all map individual digits to tokens. This does turn out to be a bit useful for our project, although it's not an essential requirement."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0f03c0ee-3103-4603-af5c-b484884a3aa2",
   "metadata": {},
   "source": [
    "# Finally\n",
    "\n",
    "It's time to break down our data into a training, test and validation dataset.\n",
    "\n",
    "It's typical to use 5%-10% of your data for testing purposes, but actually we have far more than we need at this point. We'll take 400,000 points for training, and we'll reserve 2,000 for testing, although we won't use all of them.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3b163ca2-18ef-4c26-8e9d-88eb55f114f6",
   "metadata": {},
   "outputs": [],
   "source": [
    "random.seed(42)\n",
    "random.shuffle(sample)\n",
    "train = sample[:400_000]\n",
    "test = sample[400_000:402_000]\n",
    "print(f\"Divided into a training set of {len(train):,} items and test set of {len(test):,} items\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "299b9816-8885-4798-829a-69d66d60eb01",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(train[0].prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "97222da3-9f2c-4d15-a5cd-5e5f8dbde6cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(test[0].test_prompt())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7a116369-335a-412b-b70c-2add6675c2e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Plot the distribution of prices in the first 250 test points\n",
    "\n",
    "prices = [float(item.price) for item in test[:250]]\n",
    "plt.figure(figsize=(15, 6))\n",
    "plt.title(f\"Avg {sum(prices)/len(prices):.2f} and highest {max(prices):,.2f}\\n\")\n",
    "plt.xlabel('Price ($)')\n",
    "plt.ylabel('Count')\n",
    "plt.hist(prices, rwidth=0.7, color=\"darkblue\", bins=range(0, 1000, 10))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d522d752-6f66-4786-a4dc-8ef51842558c",
   "metadata": {},
   "source": [
    "# Finally - upload your brand new dataset\n",
    "\n",
    "Convert to prompts and upload to HuggingFace hub"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fa11b3e5-fcf4-4efc-a573-f6f67fec3e73",
   "metadata": {},
   "outputs": [],
   "source": [
    "train_prompts = [item.prompt for item in train]\n",
    "train_prices = [item.price for item in train]\n",
    "test_prompts = [item.test_prompt() for item in test]\n",
    "test_prices = [item.price for item in test]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b020ab1b-7153-4e5f-b8a3-d5bc2fafb6df",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a Dataset from the lists\n",
    "\n",
    "train_dataset = Dataset.from_dict({\"text\": train_prompts, \"price\": train_prices})\n",
    "test_dataset = Dataset.from_dict({\"text\": test_prompts, \"price\": test_prices})\n",
    "dataset = DatasetDict({\n",
    "    \"train\": train_dataset,\n",
    "    \"test\": test_dataset\n",
    "})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "17639641-fb55-44e2-a463-b0b394d00f32",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Uncomment these lines if you're ready to push to the hub, and replace my name with your HF username\n",
    "\n",
    "# HF_USER = \"ed-donner\"\n",
    "# DATASET_NAME = f\"{HF_USER}/pricer-data\"\n",
    "# dataset.push_to_hub(DATASET_NAME, private=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b85733ba-d165-4f07-b055-46803543edfe",
   "metadata": {},
   "outputs": [],
   "source": [
    "# One more thing!\n",
    "# Let's pickle the training and test dataset so we don't have to execute all this code next time!\n",
    "\n",
    "with open('train.pkl', 'wb') as file:\n",
    "    pickle.dump(train, file)\n",
    "\n",
    "with open('test.pkl', 'wb') as file:\n",
    "    pickle.dump(test, file)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2b58dc61-747f-46f7-b9e0-c205db4f3e5e",
   "metadata": {},
   "source": [
    "## Todos for you:\n",
    "\n",
    "- Investigate the dataset more!\n",
    "- Confirm that the tokenizer tokenizes all 3 digit prices into 1 token"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}