Spaces:
Sleeping
Sleeping
File size: 19,423 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
{
"cells": [
{
"cell_type": "markdown",
"id": "28a0673e-96b5-43f2-8a8b-bd033bf851b0",
"metadata": {},
"source": [
"# The Product Pricer Continued\n",
"\n",
"A model that can estimate how much something costs, from its description.\n",
"\n",
"## Data Curation Part 2\n",
"\n",
"Today we'll extend our dataset to a greater coverage, and craft it into an excellent dataset for training. \n",
"Data curation can seem less exciting than other things we work on, but it's a crucial part of the LLM engineers' responsibility and an important craft to hone, so that you can build your own commercial solutions with high quality datasets.\n",
"\n",
"The dataset is here: \n",
"https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023\n",
"\n",
"And the folder with all the product datasets is here: \n",
"https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023/tree/main/raw/meta_categories\n",
"\n",
"## Important Note - read me first please\n",
"\n",
"We are about to craft a massive dataset of 400,000 items covering multiple types of product. In Week 7 we will be using this data to train our own model. It's a pretty big dataset, and depending on the GPU you select, training could take 20+ hours. It will be really good fun, but it could cost a few dollars in compute units.\n",
"\n",
"As an alternative, if you want to keep things quick & low cost, you can work with a smaller dataset focused only on Home Appliances. You'll be able to cover the same learning points; the results will be good -- not quite as good as the full dataset, but still pretty amazing! If you'd prefer to do this, I've set up an alternative jupyter notebook in this folder called `lite.ipynb` that you should use in place of this one.\n",
"\n",
"Also, if you'd prefer, you can shortcut running all this data curation by downloading the pickle files that we save in the last cell. The pickle files are available here: https://drive.google.com/drive/folders/1f_IZGybvs9o0J5sb3xmtTEQB3BXllzrW"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "67cedf85-8125-4322-998e-9375fe745597",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import random\n",
"from dotenv import load_dotenv\n",
"from huggingface_hub import login\n",
"from datasets import load_dataset, Dataset, DatasetDict\n",
"import matplotlib.pyplot as plt\n",
"from collections import Counter, defaultdict\n",
"import numpy as np\n",
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7390a6aa-79cb-4dea-b6d7-de7e4b13e472",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"\n",
"load_dotenv(override=True)\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0732274a-aa6a-44fc-aee2-40dc8a8e4451",
"metadata": {},
"outputs": [],
"source": [
"# Log in to HuggingFace\n",
"\n",
"hf_token = os.environ['HF_TOKEN']\n",
"login(hf_token, add_to_git_credential=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6746144c-2e19-485a-8086-368c144722b4",
"metadata": {},
"outputs": [],
"source": [
"# More imports after HF login\n",
"\n",
"from loaders import ItemLoader\n",
"from items import Item"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1adcf323-de9d-4c24-a9c3-d7ae554d06ca",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"id": "01065d69-765c-42c8-9f90-68b8c8754068",
"metadata": {},
"source": [
"## The ItemLoader code\n",
"\n",
"Look in loaders.py - there's some useful code to make life easier for us"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "049885d4-fdfa-4ff0-a932-4a2ed73928e2",
"metadata": {},
"outputs": [],
"source": [
"# Load in the same dataset as last time\n",
"\n",
"items = ItemLoader(\"Appliances\").load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ffba41b5-ddb6-4359-9790-9b2db900eee1",
"metadata": {},
"outputs": [],
"source": [
"# Look for a familiar item..\n",
"print(items[1].prompt)"
]
},
{
"cell_type": "markdown",
"id": "e2b6dc50-ac5c-4cf2-af2e-968ed8ef86d7",
"metadata": {},
"source": [
"## Now to SCALE UP\n",
"\n",
"Let's look at all datasets of all the items that you might find in a large home retail store - electrical, electronic, office and related, but not clothes / beauty / books."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1d06cd3-f3c2-44f0-a9f2-13b54ff8be5c",
"metadata": {},
"outputs": [],
"source": [
"dataset_names = [\n",
" \"Automotive\",\n",
" \"Electronics\",\n",
" \"Office_Products\",\n",
" \"Tools_and_Home_Improvement\",\n",
" \"Cell_Phones_and_Accessories\",\n",
" \"Toys_and_Games\",\n",
" \"Appliances\",\n",
" \"Musical_Instruments\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aa8fd0f0-509a-4298-8fcc-e499a061e1be",
"metadata": {},
"outputs": [],
"source": [
"items = []\n",
"for dataset_name in dataset_names:\n",
" loader = ItemLoader(dataset_name)\n",
" items.extend(loader.load())\n",
"\n",
"# Now, time for a coffee break!!\n",
"# By the way, I put the biggest datasets first.. it gets faster."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3e29a5ab-ca61-41cc-9b33-22d374681b85",
"metadata": {},
"outputs": [],
"source": [
"print(f\"A grand total of {len(items):,} items\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "89078cb1-9679-4eb0-b295-599b8586bcd1",
"metadata": {},
"outputs": [],
"source": [
"# Plot the distribution of token counts again\n",
"\n",
"tokens = [item.token_count for item in items]\n",
"plt.figure(figsize=(15, 6))\n",
"plt.title(f\"Token counts: Avg {sum(tokens)/len(tokens):,.1f} and highest {max(tokens):,}\\n\")\n",
"plt.xlabel('Length (tokens)')\n",
"plt.ylabel('Count')\n",
"plt.hist(tokens, rwidth=0.7, color=\"skyblue\", bins=range(0, 300, 10))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c38e0c43-9f7a-450e-a911-c94d37d9b9c3",
"metadata": {},
"outputs": [],
"source": [
"# Plot the distribution of prices\n",
"\n",
"prices = [item.price for item in items]\n",
"plt.figure(figsize=(15, 6))\n",
"plt.title(f\"Prices: Avg {sum(prices)/len(prices):,.1f} and highest {max(prices):,}\\n\")\n",
"plt.xlabel('Price ($)')\n",
"plt.ylabel('Count')\n",
"plt.hist(prices, rwidth=0.7, color=\"blueviolet\", bins=range(0, 1000, 10))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eabc7c61-0cd2-41f4-baa1-b85400bbf87f",
"metadata": {},
"outputs": [],
"source": [
"category_counts = Counter()\n",
"for item in items:\n",
" category_counts[item.category]+=1\n",
"\n",
"categories = category_counts.keys()\n",
"counts = [category_counts[category] for category in categories]\n",
"\n",
"# Bar chart by category\n",
"plt.figure(figsize=(15, 6))\n",
"plt.bar(categories, counts, color=\"goldenrod\")\n",
"plt.title('How many in each category')\n",
"plt.xlabel('Categories')\n",
"plt.ylabel('Count')\n",
"\n",
"plt.xticks(rotation=30, ha='right')\n",
"\n",
"# Add value labels on top of each bar\n",
"for i, v in enumerate(counts):\n",
" plt.text(i, v, f\"{v:,}\", ha='center', va='bottom')\n",
"\n",
"# Display the chart\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "e5b6e987-83ba-4262-a082-57c6b0741062",
"metadata": {},
"source": [
"# Objective\n",
"\n",
"Craft a dataset which is more balanced in terms of prices. Less heavily scewed to cheap items, with an average that's higher than $60. Try to balance out the categories - fewer Automotive items."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b9424c1-44e0-499a-b45e-a35246655469",
"metadata": {},
"outputs": [],
"source": [
"# Create a dict with a key of each price from $1 to $999\n",
"# And in the value, put a list of items with that price (to nearest round number)\n",
"\n",
"slots = defaultdict(list)\n",
"for item in items:\n",
" slots[round(item.price)].append(item)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7805a7f1-4ad8-48f6-bea3-d64b64894804",
"metadata": {},
"outputs": [],
"source": [
"# Create a dataset called \"sample\" which tries to more evenly take from the range of prices\n",
"# And gives more weight to items from categories other than Automotive\n",
"# Set random seed for reproducibility\n",
"\n",
"np.random.seed(42)\n",
"random.seed(42)\n",
"sample = []\n",
"for i in range(1, 1000):\n",
" slot = slots[i]\n",
" if i>=240:\n",
" sample.extend(slot)\n",
" elif len(slot) <= 1200:\n",
" sample.extend(slot)\n",
" else:\n",
" weights = np.array([1 if item.category=='Automotive' else 5 for item in slot])\n",
" weights = weights / np.sum(weights)\n",
" selected_indices = np.random.choice(len(slot), size=1200, replace=False, p=weights)\n",
" selected = [slot[i] for i in selected_indices]\n",
" sample.extend(selected)\n",
"\n",
"print(f\"There are {len(sample):,} items in the sample\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "430b432f-b769-41da-9506-a238cb5cf1b6",
"metadata": {},
"outputs": [],
"source": [
"# Plot the distribution of prices in sample\n",
"\n",
"prices = [float(item.price) for item in sample]\n",
"plt.figure(figsize=(15, 10))\n",
"plt.title(f\"Avg {sum(prices)/len(prices):.2f} and highest {max(prices):,.2f}\\n\")\n",
"plt.xlabel('Price ($)')\n",
"plt.ylabel('Count')\n",
"plt.hist(prices, rwidth=0.7, color=\"darkblue\", bins=range(0, 1000, 10))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d570794-6f1d-462e-b567-a46bae3556a1",
"metadata": {},
"outputs": [],
"source": [
"# OK, we did well in terms of raising the average price and having a smooth-ish population of prices\n",
"# Let's see the categories\n",
"\n",
"category_counts = Counter()\n",
"for item in sample:\n",
" category_counts[item.category]+=1\n",
"\n",
"categories = category_counts.keys()\n",
"counts = [category_counts[category] for category in categories]\n",
"\n",
"# Create bar chart\n",
"plt.figure(figsize=(15, 6))\n",
"plt.bar(categories, counts, color=\"lightgreen\")\n",
"\n",
"# Customize the chart\n",
"plt.title('How many in each category')\n",
"plt.xlabel('Categories')\n",
"plt.ylabel('Count')\n",
"\n",
"plt.xticks(rotation=30, ha='right')\n",
"\n",
"# Add value labels on top of each bar\n",
"for i, v in enumerate(counts):\n",
" plt.text(i, v, f\"{v:,}\", ha='center', va='bottom')\n",
"\n",
"# Display the chart\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6609d77c-3e0a-4679-9129-c7cdc3273070",
"metadata": {},
"outputs": [],
"source": [
"# Automotive still in the lead, but improved somewhat\n",
"# For another perspective, let's look at a pie\n",
"\n",
"plt.figure(figsize=(12, 10))\n",
"plt.pie(counts, labels=categories, autopct='%1.0f%%', startangle=90)\n",
"\n",
"# Add a circle at the center to create a donut chart (optional)\n",
"centre_circle = plt.Circle((0,0), 0.70, fc='white')\n",
"fig = plt.gcf()\n",
"fig.gca().add_artist(centre_circle)\n",
"plt.title('Categories')\n",
"\n",
"# Equal aspect ratio ensures that pie is drawn as a circle\n",
"plt.axis('equal') \n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "ac046cc1-2717-415b-96ad-b73b2950d235",
"metadata": {},
"source": [
"# Dataset Curated!\n",
"\n",
"We've crafted an excellent dataset.\n",
"\n",
"Let's do some final checks"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "70219e99-22cc-4e08-9121-51f9707caef0",
"metadata": {},
"outputs": [],
"source": [
"# How does the price vary with the character count of the prompt?\n",
"\n",
"sizes = [len(item.prompt) for item in sample]\n",
"prices = [item.price for item in sample]\n",
"\n",
"# Create the scatter plot\n",
"plt.figure(figsize=(15, 8))\n",
"plt.scatter(sizes, prices, s=0.2, color=\"red\")\n",
"\n",
"# Add labels and title\n",
"plt.xlabel('Size')\n",
"plt.ylabel('Price')\n",
"plt.title('Is there a simple correlation?')\n",
"\n",
"# Display the plot\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "30ae1453-b9fc-40db-8310-65d850c4b1da",
"metadata": {},
"outputs": [],
"source": [
"def report(item):\n",
" prompt = item.prompt\n",
" tokens = Item.tokenizer.encode(item.prompt)\n",
" print(prompt)\n",
" print(tokens[-10:])\n",
" print(Item.tokenizer.batch_decode(tokens[-10:]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9998b8d-d746-4541-9ac2-701108e0e8fb",
"metadata": {},
"outputs": [],
"source": [
"report(sample[398000])"
]
},
{
"cell_type": "markdown",
"id": "7aa0a3fc-d2fe-4e6e-8fdb-96913df2f588",
"metadata": {},
"source": [
"## Observation\n",
"\n",
"An interesting thing about the Llama tokenizer is that every number from 1 to 999 gets mapped to 1 token, much as we saw with gpt-4o. The same is not true of qwen2, gemma and phi3, which all map individual digits to tokens. This does turn out to be a bit useful for our project, although it's not an essential requirement."
]
},
{
"cell_type": "markdown",
"id": "0f03c0ee-3103-4603-af5c-b484884a3aa2",
"metadata": {},
"source": [
"# Finally\n",
"\n",
"It's time to break down our data into a training, test and validation dataset.\n",
"\n",
"It's typical to use 5%-10% of your data for testing purposes, but actually we have far more than we need at this point. We'll take 400,000 points for training, and we'll reserve 2,000 for testing, although we won't use all of them.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b163ca2-18ef-4c26-8e9d-88eb55f114f6",
"metadata": {},
"outputs": [],
"source": [
"random.seed(42)\n",
"random.shuffle(sample)\n",
"train = sample[:400_000]\n",
"test = sample[400_000:402_000]\n",
"print(f\"Divided into a training set of {len(train):,} items and test set of {len(test):,} items\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "299b9816-8885-4798-829a-69d66d60eb01",
"metadata": {},
"outputs": [],
"source": [
"print(train[0].prompt)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97222da3-9f2c-4d15-a5cd-5e5f8dbde6cc",
"metadata": {},
"outputs": [],
"source": [
"print(test[0].test_prompt())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a116369-335a-412b-b70c-2add6675c2e3",
"metadata": {},
"outputs": [],
"source": [
"# Plot the distribution of prices in the first 250 test points\n",
"\n",
"prices = [float(item.price) for item in test[:250]]\n",
"plt.figure(figsize=(15, 6))\n",
"plt.title(f\"Avg {sum(prices)/len(prices):.2f} and highest {max(prices):,.2f}\\n\")\n",
"plt.xlabel('Price ($)')\n",
"plt.ylabel('Count')\n",
"plt.hist(prices, rwidth=0.7, color=\"darkblue\", bins=range(0, 1000, 10))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "d522d752-6f66-4786-a4dc-8ef51842558c",
"metadata": {},
"source": [
"# Finally - upload your brand new dataset\n",
"\n",
"Convert to prompts and upload to HuggingFace hub"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa11b3e5-fcf4-4efc-a573-f6f67fec3e73",
"metadata": {},
"outputs": [],
"source": [
"train_prompts = [item.prompt for item in train]\n",
"train_prices = [item.price for item in train]\n",
"test_prompts = [item.test_prompt() for item in test]\n",
"test_prices = [item.price for item in test]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b020ab1b-7153-4e5f-b8a3-d5bc2fafb6df",
"metadata": {},
"outputs": [],
"source": [
"# Create a Dataset from the lists\n",
"\n",
"train_dataset = Dataset.from_dict({\"text\": train_prompts, \"price\": train_prices})\n",
"test_dataset = Dataset.from_dict({\"text\": test_prompts, \"price\": test_prices})\n",
"dataset = DatasetDict({\n",
" \"train\": train_dataset,\n",
" \"test\": test_dataset\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "17639641-fb55-44e2-a463-b0b394d00f32",
"metadata": {},
"outputs": [],
"source": [
"# Uncomment these lines if you're ready to push to the hub, and replace my name with your HF username\n",
"\n",
"# HF_USER = \"ed-donner\"\n",
"# DATASET_NAME = f\"{HF_USER}/pricer-data\"\n",
"# dataset.push_to_hub(DATASET_NAME, private=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b85733ba-d165-4f07-b055-46803543edfe",
"metadata": {},
"outputs": [],
"source": [
"# One more thing!\n",
"# Let's pickle the training and test dataset so we don't have to execute all this code next time!\n",
"\n",
"with open('train.pkl', 'wb') as file:\n",
" pickle.dump(train, file)\n",
"\n",
"with open('test.pkl', 'wb') as file:\n",
" pickle.dump(test, file)"
]
},
{
"cell_type": "markdown",
"id": "2b58dc61-747f-46f7-b9e0-c205db4f3e5e",
"metadata": {},
"source": [
"## Todos for you:\n",
"\n",
"- Investigate the dataset more!\n",
"- Confirm that the tokenizer tokenizes all 3 digit prices into 1 token"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|