File size: 13,837 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "28a0673e-96b5-43f2-8a8b-bd033bf851b0",
   "metadata": {},
   "source": [
    "# The Big Project begins!!\n",
    "\n",
    "## The Product Pricer\n",
    "\n",
    "A model that can estimate how much something costs, from its description.\n",
    "\n",
    "## Data Curation Part 1\n",
    "\n",
    "Today we'll begin our scrubbing and curating our dataset by focusing on a subset of the data: Home Appliances.\n",
    "\n",
    "The dataset is here:  \n",
    "https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023\n",
    "\n",
    "And the folder with all the product datasets is here:  \n",
    "https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023/tree/main/raw/meta_categories"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "67cedf85-8125-4322-998e-9375fe745597",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from huggingface_hub import login\n",
    "from datasets import load_dataset, Dataset, DatasetDict\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7390a6aa-79cb-4dea-b6d7-de7e4b13e472",
   "metadata": {},
   "outputs": [],
   "source": [
    "# environment\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0732274a-aa6a-44fc-aee2-40dc8a8e4451",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Log in to HuggingFace\n",
    "\n",
    "hf_token = os.environ['HF_TOKEN']\n",
    "login(hf_token, add_to_git_credential=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e7cb2e20-7fac-44c1-8a4b-131dd37ee06e",
   "metadata": {},
   "source": [
    "## One more import - the Item class\n",
    "\n",
    "If you get an error that you need to agree to Meta's terms when you run this, then follow the link it provides you and follow their instructions. You should get approved by Meta within minutes.\n",
    "\n",
    "See the last cell in [this colab](https://colab.research.google.com/drive/1deJO03YZTXUwcq2vzxWbiBhrRuI29Vo8?usp=sharing#scrollTo=FqyF5jZQkIl_) for steps to take if Meta doesn't approve.\n",
    "\n",
    "Any problems - message me or email me!  \n",
    "\n",
    "With thanks to student Dr John S. for pointing out that this import needs to come after signing in to HF"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b5521526-0da9-42d7-99e3-f950fab71662",
   "metadata": {},
   "outputs": [],
   "source": [
    "from items import Item"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1adcf323-de9d-4c24-a9c3-d7ae554d06ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "049885d4-fdfa-4ff0-a932-4a2ed73928e2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load in our dataset\n",
    "\n",
    "dataset = load_dataset(\"McAuley-Lab/Amazon-Reviews-2023\", f\"raw_meta_Appliances\", split=\"full\", trust_remote_code=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cde08860-b393-49b8-a620-06a8c0990a64",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(f\"Number of Appliances: {len(dataset):,}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3e29a5ab-ca61-41cc-9b33-22d374681b85",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Investigate a particular datapoint\n",
    "datapoint = dataset[2]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "40a4e10f-6710-4780-a95e-6c0030c3fb87",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Investigate\n",
    "\n",
    "print(datapoint[\"title\"])\n",
    "print(datapoint[\"description\"])\n",
    "print(datapoint[\"features\"])\n",
    "print(datapoint[\"details\"])\n",
    "print(datapoint[\"price\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9d356c6f-b6e8-4e01-98cd-c562d132aafa",
   "metadata": {},
   "outputs": [],
   "source": [
    "# How many have prices?\n",
    "\n",
    "prices = 0\n",
    "for datapoint in dataset:\n",
    "    try:\n",
    "        price = float(datapoint[\"price\"])\n",
    "        if price > 0:\n",
    "            prices += 1\n",
    "    except ValueError as e:\n",
    "        pass\n",
    "\n",
    "print(f\"There are {prices:,} with prices which is {prices/len(dataset)*100:,.1f}%\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bd890259-aa25-4097-9524-f91c2bdd719b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# For those with prices, gather the price and the length\n",
    "\n",
    "prices = []\n",
    "lengths = []\n",
    "for datapoint in dataset:\n",
    "    try:\n",
    "        price = float(datapoint[\"price\"])\n",
    "        if price > 0:\n",
    "            prices.append(price)\n",
    "            contents = datapoint[\"title\"] + str(datapoint[\"description\"]) + str(datapoint[\"features\"]) + str(datapoint[\"details\"])\n",
    "            lengths.append(len(contents))\n",
    "    except ValueError as e:\n",
    "        pass"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "89078cb1-9679-4eb0-b295-599b8586bcd1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Plot the distribution of lengths\n",
    "\n",
    "plt.figure(figsize=(15, 6))\n",
    "plt.title(f\"Lengths: Avg {sum(lengths)/len(lengths):,.0f} and highest {max(lengths):,}\\n\")\n",
    "plt.xlabel('Length (chars)')\n",
    "plt.ylabel('Count')\n",
    "plt.hist(lengths, rwidth=0.7, color=\"lightblue\", bins=range(0, 6000, 100))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c38e0c43-9f7a-450e-a911-c94d37d9b9c3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Plot the distribution of prices\n",
    "\n",
    "plt.figure(figsize=(15, 6))\n",
    "plt.title(f\"Prices: Avg {sum(prices)/len(prices):,.2f} and highest {max(prices):,}\\n\")\n",
    "plt.xlabel('Price ($)')\n",
    "plt.ylabel('Count')\n",
    "plt.hist(prices, rwidth=0.7, color=\"orange\", bins=range(0, 1000, 10))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eabc7c61-0cd2-41f4-baa1-b85400bbf87f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# So what is this item??\n",
    "\n",
    "for datapoint in dataset:\n",
    "    try:\n",
    "        price = float(datapoint[\"price\"])\n",
    "        if price > 21000:\n",
    "            print(datapoint['title'])\n",
    "    except ValueError as e:\n",
    "        pass"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3668ae25-3461-4e6e-9ccb-221c1925a497",
   "metadata": {},
   "source": [
    "This is the closest I can find - looks like it's going at a bargain price!!\n",
    "\n",
    "https://www.amazon.com/TurboChef-Electric-Countertop-Microwave-Convection/dp/B01D05U9NO/"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a0d02f58-23f6-4f81-a779-7c0555afd13d",
   "metadata": {},
   "source": [
    "## Now it's time to curate our dataset\n",
    "\n",
    "We select items that cost between 1 and 999 USD\n",
    "\n",
    "We will be create Item instances, which truncate the text to fit within 180 tokens using the right Tokenizer\n",
    "\n",
    "And will create a prompt to be used during Training.\n",
    "\n",
    "Items will be rejected if they don't have sufficient characters.\n",
    "\n",
    "## But why 180 tokens??\n",
    "\n",
    "A student asked me a great question - why are we truncating to 180 tokens? How did we determine that number? (Thank you Moataz A. for the excellent question).\n",
    "\n",
    "The answer: this is an example of a \"hyper-parameter\". In other words, it's basically trial and error! We want a sufficiently large number of tokens so that we have enough useful information to gauge the price. But we also want to keep the number low so that we can train efficiently. You'll see this in action in Week 7.\n",
    "\n",
    "I started with a number that seemed reasonable, and experimented with a few variations before settling on 180. If you have time, you should do the same! You might find that you can beat my results by finding a better balance. This kind of trial-and-error might sound a bit unsatisfactory, but it's a crucial part of the data science R&D process.\n",
    "\n",
    "There's another interesting reason why we might favor a lower number of tokens in the training data. When we eventually get to use our model at inference time, we'll want to provide new products and have it estimate a price. And we'll be using short descriptions of products - like 1-2 sentences. For best performance, we should size our training data to be similar to the inputs we will provide at inference time.\n",
    "\n",
    "## But I see in items.py it constrains inputs to 160 tokens?\n",
    "\n",
    "Another great question from Moataz A.! The description of the products is limited to 160 tokens because we add some more text before and after the description to turn it into a prompt. That brings it to around 180 tokens in total.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "430b432f-b769-41da-9506-a238cb5cf1b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create an Item object for each with a price\n",
    "\n",
    "items = []\n",
    "for datapoint in dataset:\n",
    "    try:\n",
    "        price = float(datapoint[\"price\"])\n",
    "        if price > 0:\n",
    "            item = Item(datapoint, price)\n",
    "            if item.include:\n",
    "                items.append(item)\n",
    "    except ValueError as e:\n",
    "        pass\n",
    "\n",
    "print(f\"There are {len(items):,} items\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0d570794-6f1d-462e-b567-a46bae3556a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Look at the first item\n",
    "\n",
    "items[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "70219e99-22cc-4e08-9121-51f9707caef0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Investigate the prompt that will be used during training - the model learns to complete this\n",
    "\n",
    "print(items[100].prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d9998b8d-d746-4541-9ac2-701108e0e8fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Investigate the prompt that will be used during testing - the model has to complete this\n",
    "\n",
    "print(items[100].test_prompt())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7a116369-335a-412b-b70c-2add6675c2e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Plot the distribution of token counts\n",
    "\n",
    "tokens = [item.token_count for item in items]\n",
    "plt.figure(figsize=(15, 6))\n",
    "plt.title(f\"Token counts: Avg {sum(tokens)/len(tokens):,.1f} and highest {max(tokens):,}\\n\")\n",
    "plt.xlabel('Length (tokens)')\n",
    "plt.ylabel('Count')\n",
    "plt.hist(tokens, rwidth=0.7, color=\"green\", bins=range(0, 300, 10))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8d1744aa-71e7-435e-876e-91f06583211a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Plot the distribution of prices\n",
    "\n",
    "prices = [item.price for item in items]\n",
    "plt.figure(figsize=(15, 6))\n",
    "plt.title(f\"Prices: Avg {sum(prices)/len(prices):,.1f} and highest {max(prices):,}\\n\")\n",
    "plt.xlabel('Price ($)')\n",
    "plt.ylabel('Count')\n",
    "plt.hist(prices, rwidth=0.7, color=\"purple\", bins=range(0, 300, 10))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2b58dc61-747f-46f7-b9e0-c205db4f3e5e",
   "metadata": {},
   "source": [
    "## Sidenote\n",
    "\n",
    "If you like the variety of colors that matplotlib can use in its charts, you should bookmark this:\n",
    "\n",
    "https://matplotlib.org/stable/gallery/color/named_colors.html\n",
    "\n",
    "## Todos for you:\n",
    "\n",
    "- Review the Item class and check you're comfortable with it\n",
    "- Examine some Item objects, look at the training prompt with `item.prompt` and test prompt with `item.test_prompt()`\n",
    "- Make some more histograms to better understand the data\n",
    "\n",
    "## Next time we will combine with many other types of product\n",
    "\n",
    "Like Electronics and Automotive. This will give us a massive dataset, and we can then be picky about choosing a subset that will be most suitable for training."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "01401283-d111-40a7-96e5-0ca05bb20857",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}