Spaces:
Sleeping
Sleeping
File size: 25,361 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
{
"cells": [
{
"cell_type": "markdown",
"id": "28a0673e-96b5-43f2-8a8b-bd033bf851b0",
"metadata": {},
"source": [
"# Add a Validation Set\n",
"\n",
"In the lecture, we created a curated dataset with **400,000 training items** and **2,000 test items**, but we did not include a validation (dev) set. This notebook demonstrates how to take Ed Donner’s dataset, [ed-donner/pricer-data](https://huggingface.co/datasets/ed-donner/pricer-data), and add a dev set to it.\n",
"\n",
"> **Note**: This notebook heavily uses snippets from the lectures’ `day2.ipynb` of Week 6.\n",
"\n",
"**Download the Updated Dataset**: \n",
"You can find the resulting dataset here: [antonawinkler/pricer-data](https://huggingface.co/datasets/antonawinkler/pricer-data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "67cedf85-8125-4322-998e-9375fe745597",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"# Standard libraries\n",
"import os\n",
"import random\n",
"from itertools import chain\n",
"from collections import Counter, defaultdict\n",
"\n",
"# Third-party libraries\n",
"from dotenv import load_dotenv\n",
"from huggingface_hub import login\n",
"from datasets import concatenate_datasets, load_dataset, Dataset, DatasetDict\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"# Local modules\n",
"from items import Item\n",
"from loaders import ItemLoader\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7390a6aa-79cb-4dea-b6d7-de7e4b13e472",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"\n",
"load_dotenv()\n",
"os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0732274a-aa6a-44fc-aee2-40dc8a8e4451",
"metadata": {},
"outputs": [],
"source": [
"# Log in to HuggingFace\n",
"\n",
"hf_token = os.environ['HF_TOKEN']\n",
"login(hf_token, add_to_git_credential=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1adcf323-de9d-4c24-a9c3-d7ae554d06ca",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"id": "e2b6dc50-ac5c-4cf2-af2e-968ed8ef86d7",
"metadata": {},
"source": [
"## Load the Original Dataset\n",
"\n",
"Load the original data from McAuley-Lab/Amazon-Reviews-2023."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1d06cd3-f3c2-44f0-a9f2-13b54ff8be5c",
"metadata": {},
"outputs": [],
"source": [
"dataset_names = [\n",
" \"Automotive\",\n",
" \"Electronics\",\n",
" \"Office_Products\",\n",
" \"Tools_and_Home_Improvement\",\n",
" \"Cell_Phones_and_Accessories\",\n",
" \"Toys_and_Games\",\n",
" \"Appliances\",\n",
" \"Musical_Instruments\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aa8fd0f0-509a-4298-8fcc-e499a061e1be",
"metadata": {},
"outputs": [],
"source": [
"items = []\n",
"for dataset_name in dataset_names:\n",
" loader = ItemLoader(dataset_name)\n",
" items.extend(loader.load())"
]
},
{
"cell_type": "markdown",
"id": "bf6b6b66-4a4b-41c2-b366-1f598cf18351",
"metadata": {},
"source": [
"# Create Balanced Dataset\n",
"\n",
"We apply the balancing algorithm from the course."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "549a4bad-abe7-4d36-ad77-fc70ba0f151c",
"metadata": {},
"outputs": [],
"source": [
"slots = defaultdict(list)\n",
"for item in items:\n",
" slots[round(item.price)].append(item)\n",
"\n",
"np.random.seed(42)\n",
"random.seed(42)\n",
"sample = []\n",
"for i in range(1, 1000):\n",
" slot = slots[i]\n",
" if i>=240:\n",
" sample.extend(slot)\n",
" elif len(slot) <= 1200:\n",
" sample.extend(slot)\n",
" else:\n",
" weights = np.array([1 if item.category=='Automotive' else 5 for item in slot])\n",
" weights = weights / np.sum(weights)\n",
" selected_indices = np.random.choice(len(slot), size=1200, replace=False, p=weights)\n",
" selected = [slot[i] for i in selected_indices]\n",
" sample.extend(selected)\n",
"\n",
"print(f\"There are {len(sample):,} items in the sample\")"
]
},
{
"cell_type": "markdown",
"id": "04280d2b-210a-4fad-9163-1b32a87fb990",
"metadata": {},
"source": [
"The output I get is `There are 408,635 items in the sample`\n",
"\n",
"Since there are 400,000 items in the train set of ed-donner/pricer-data, we can aim for a 98/1/1 split."
]
},
{
"cell_type": "markdown",
"id": "0d1e2836-0cae-4496-a5d4-d80bc14d566b",
"metadata": {},
"source": [
"## Load Ed Donner's Pricer Data Set"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a84e5a71-fc44-4cdf-9bc2-c69f80b8ee94",
"metadata": {},
"outputs": [],
"source": [
"dataset_ori = load_dataset(\"ed-donner/pricer-data\")\n",
"train_ori = dataset_ori['train']\n",
"test_ori = dataset_ori['test']"
]
},
{
"cell_type": "markdown",
"id": "e9c5c877-3d30-4013-9d0f-1e490755afeb",
"metadata": {},
"source": [
"## Observation 1: Order of the Data Has Changed\n",
"\n",
"`dataset_without_devset` should be a subset of `sample`. The order however can be different. Let us check this.\n",
"\n",
"I see different results for the following two cells below, indicating that the order has changed."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56ad8682-4d7f-4aad-9976-96eb6d9b4a5a",
"metadata": {},
"outputs": [],
"source": [
"sample[0].prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3e29a5ab-ca61-41cc-9b33-22d374681b85",
"metadata": {},
"outputs": [],
"source": [
"train_ori[0]['text']"
]
},
{
"cell_type": "markdown",
"id": "469a5b3c-c1a2-461d-a88d-27aa08905b31",
"metadata": {},
"source": [
"## Observation 2: Duplicate Items\n",
"\n",
"As an further challenge, the dataset shows duplicates with identical scrubbed descriptions. For some of these duplicates the prices are identical too (I see 1774), for others they differ (I see 6747).\n",
"\n",
"> **Note**: Below we use `defaultdict(list)` instead of `set` because it allows to inspect duplicates easily."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "94adffe8-edf6-4503-9f8f-34e4dfd29da9",
"metadata": {},
"outputs": [],
"source": [
"PRICE_IS = \"\\n\\nPrice is $\"\n",
"def get_key(text, price):\n",
" prefix, price_is, _price_nearest_dollar = text.partition(PRICE_IS)\n",
" return f\"{prefix}{price_is}{price}\"\n",
"def get_key_without_price(text):\n",
" prefix, price_is, _price_nearest_dollar = text.partition(PRICE_IS)\n",
" return f\"{prefix}\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a015ba1b-69e0-4651-850f-d93d3f078d16",
"metadata": {},
"outputs": [],
"source": [
"# Identify duplicates by text+price\n",
"train_ori_dict = defaultdict(list)\n",
"for datapoint in train_ori:\n",
" # Creates a key from the text and price (scrubbed)\n",
" key = get_key(datapoint[\"text\"], datapoint[\"price\"])\n",
" train_ori_dict[key].append(datapoint)\n",
"\n",
"# Number of exact duplicates (same text AND same price)\n",
"exact_duplicates = len(train_ori) - len(train_ori_dict)\n",
"print(f\"There are {exact_duplicates} duplicates with the same description and price.\")\n",
"\n",
"# Identify duplicates by text alone (ignoring price)\n",
"train_ori_dict_no_price = defaultdict(list)\n",
"for datapoint in train_ori:\n",
" key_no_price = get_key_without_price(datapoint[\"text\"])\n",
" train_ori_dict_no_price[key_no_price].append(datapoint)\n",
"\n",
"# Number of duplicates that differ in price but share the same text\n",
"different_price_duplicates = len(train_ori_dict) - len(train_ori_dict_no_price)\n",
"print(f\"In addition, there are {different_price_duplicates} data points where the description is duplicated but the price is different.\")\n",
"\n",
"# Total number of duplicates if we consider text alone\n",
"overall_duplicates = len(train_ori) - len(train_ori_dict_no_price)\n",
"print(f\"Overall number of duplicates: {overall_duplicates}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e577dd8b-be0f-4ab0-b45f-9d3459b1286a",
"metadata": {},
"outputs": [],
"source": [
"test_ori_dict = defaultdict(list)\n",
"for datapoint in test_ori:\n",
" key = get_key(datapoint['text'], datapoint['price'])\n",
" test_ori_dict[key].append(datapoint)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0198fc23-0825-4ce1-a961-1d390d86cbdc",
"metadata": {},
"outputs": [],
"source": [
"sample_dict = defaultdict(list)\n",
"for datapoint in sample:\n",
" key = get_key(datapoint.prompt, datapoint.price)\n",
" sample_dict[key].append(datapoint)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "37f24d22-51ef-472b-8c73-e969637fa925",
"metadata": {},
"outputs": [],
"source": [
"# Check if all data points in train_ori/test_ori are included in the new sample_dict.\n",
"missing = []\n",
"count_found = 0\n",
"\n",
"for datapoint in chain(train_ori, test_ori):\n",
" key = get_key(datapoint[\"text\"], datapoint[\"price\"])\n",
" if key not in sample_dict:\n",
" missing.append(datapoint)\n",
" else:\n",
" count_found += 1\n",
"\n",
"print(f\"We found {count_found} datapoints in sample_dict.\")\n",
"print(f\"We are missing {len(missing)} datapoints that are not present in sample_dict.\")"
]
},
{
"cell_type": "markdown",
"id": "60c9d186-c688-4559-9b51-f0045d16829b",
"metadata": {},
"source": [
"Expected output of the previous cell\n",
"```\n",
"We found 402000 datapoints in sample_dict.\n",
"We are missing 0 datapoints that are not present in sample_dict.\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "3b05e22d-a755-4ee5-a18b-620f7ab1df8f",
"metadata": {},
"source": [
"## Add Data Points to the Test and Validation Sets\n",
"\n",
"Since we can match all data points in the original train and test sets from `ed-donner/pricer-data`, we’ll now incorporate any *unused* items from our balanced sample into the test set and create a new validation (dev) set. Our goal is to achieve a **98/1/1** split for train, validation, and test."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16638cf9-03c3-46bc-8116-cafdd9e23ac9",
"metadata": {},
"outputs": [],
"source": [
"sample_not_used_yet = [datapoint for key in sample_dict.keys() - train_ori_dict.keys() - test_ori_dict.keys() for datapoint in sample_dict[key]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58a593ad-29a1-4b35-9753-45db75e09666",
"metadata": {},
"outputs": [],
"source": [
"# As a santity check, let us visually verify that the distribution of sample_still_available is in line with the complete sample.\n",
"\n",
"# Plot the distribution of prices in sample\n",
"def plot_price_distribution(items, name):\n",
" prices = [float(item.price) for item in items]\n",
" plt.figure(figsize=(15, 10))\n",
" plt.title(f\"{name} - Avg {sum(prices)/len(prices):.2f} and highest {max(prices):,.2f}\\n\")\n",
" plt.xlabel('Price ($)')\n",
" plt.ylabel('Count')\n",
" # see https://stackoverflow.com/questions/57026223/how-to-re-scale-the-counts-in-a-matplotlib-histogram\n",
" (counts, bins) = np.histogram(prices, bins=range(0, 1000, 10))\n",
" plt.hist(bins[:-1], color=\"darkblue\", bins=bins, weights=counts/len(prices))\n",
" plt.show() \n",
"\n",
"\n",
"def plot_category_distribution(items, name):\n",
" category_counts = Counter()\n",
" for item in items:\n",
" category_counts[item.category]+=1\n",
" categories = sorted(category_counts.keys())\n",
" counts = [category_counts[category] for category in categories]\n",
"\n",
" # plot a pie chart\n",
" plt.figure(figsize=(12, 10))\n",
" plt.pie(counts, labels=categories, autopct='%1.0f%%', startangle=90)\n",
" \n",
" # Add a circle at the center to create a donut chart (optional)\n",
" centre_circle = plt.Circle((0,0), 0.70, fc='white')\n",
" fig = plt.gcf()\n",
" fig.gca().add_artist(centre_circle)\n",
" plt.title(f'{name} - Categories')\n",
" \n",
" # Equal aspect ratio ensures that pie is drawn as a circle\n",
" plt.axis('equal') \n",
"\n",
" plt.show()\n",
"plot_price_distribution(sample, 'Complete set')\n",
"plot_price_distribution(sample_not_used_yet, 'Not used yet')\n",
"plot_category_distribution(sample, 'Complete set')\n",
"plot_category_distribution(sample_not_used_yet, 'Not used yet')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba252265-b976-426a-aefc-ebc93b153fd4",
"metadata": {},
"outputs": [],
"source": [
"# now add the unused items to the validation and test set\n",
"random.seed(42)\n",
"random.shuffle(sample_not_used_yet)\n",
"validation_items = sample_not_used_yet[:4000]\n",
"added_test_items = sample_not_used_yet[4000:]\n",
"\n",
"# create Huggingface dataset\n",
"validation_dataset = Dataset.from_dict({\"text\": [item.prompt for item in validation_items], \"price\": [item.price for item in validation_items]})\n",
"added_test_dataset = Dataset.from_dict({\"text\": [item.prompt for item in added_test_items], \"price\": [item.price for item in added_test_items]})\n",
"\n",
"dataset = DatasetDict({\n",
" \"train\": train_ori,\n",
" \"test\": concatenate_datasets([test_ori, added_test_dataset]),\n",
" \"validation\": validation_dataset,\n",
"})\n",
"\n",
"print(f\"Divided into a training set of {dataset['train'].num_rows:,} items, a validation set of {dataset['validation'].num_rows:,} items, and a test set of {dataset['test'].num_rows:,} items\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c39ac5d7-84f8-4f7d-98e1-d24651ba3a80",
"metadata": {},
"outputs": [],
"source": [
"# If you're ready to push to the hub, and fill in the dots with your HF username\n",
"\n",
"HF_USER = ...\n",
"DATASET_NAME = f\"{HF_USER}/pricer-data\"\n",
"dataset.push_to_hub(DATASET_NAME, private=True)"
]
},
{
"cell_type": "markdown",
"id": "3fcb2492-ef2a-468e-8bf1-deb18eef4d9c",
"metadata": {},
"source": [
"## Use of Validation Sets\n",
"\n",
"When you train your model in Week 7.\n",
"\n",
"```python\n",
"# load the train and validation set\n",
"train = load_dataset(DATASET_NAME, split='train[:100%]') # or less than 100%\n",
"validation = load_dataset(DATASET_NAME, split='validation[:100%]') # or less than 100% \n",
"\n",
"# Define training parameters\n",
"train_parameters = SFTConfig(\n",
" eval_strategy=\"steps\", # or \"epoch\"\n",
" eval_steps=EVAL_STEPS,\n",
" ...\n",
")\n",
"\n",
"# Initialize fine-tuning with validation set\n",
"fine_tuning = SFTTrainer(\n",
" eval_dataset=validation,\n",
" ...\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "bceb4407-d91d-4731-9e96-189f6f953cbc",
"metadata": {},
"source": [
"## A Closer Look at the Duplicates\n",
"\n",
"We have now created a dataset that includes a validation set and additional test data. During this process, we observed that **2% of the data contains duplicates**, where the scrubbed descriptions are identical.\n",
"\n",
"Duplicates can contribute to model overfitting. However, since only **2% of the dataset is duplicated**, the impact is likely minimal. Moreover, many of these duplicates actually refer to different physical objects rather than being true duplicates.\n",
"\n",
"### False Duplicates\n",
"\n",
"The “duplicates” we observe are often not duplicates in the original dataset. Minor differences in product descriptions may be removed by the scrubbing process, leading to items that *appear* identical but aren’t. For example:\n",
"\n",
"```\n",
"<RinoGear Screen Protector Designed for Sony Xperia XZ Screen Protector Case Friendly Accessories Flexible Full Coverage Clear TPU Film = $0.95>\n",
"<RinoGear (2-Pack) Screen Protector Designed for Sony Xperia XZ Screen Protector Case Friendly Accessories Flexible Full Coverage Clear TPU Film = $2.95>\n",
"```\n",
"\"(2-Pack)\" is removed in the scrub method.\n",
"\n",
"Similarly:\n",
"```\n",
"[<EBC Brakes USR7115 USR Series Sport Slotted Rotor = $31.22>,\n",
" <EBC Brakes USR7314 USR Series Sport Slotted Rotor = $71.46>,\n",
" <EBC Brakes USR7409 USR Series Sport Slotted Rotor = $88.67>,\n",
"...\n",
" <EBC Brakes USR7305 USR Series Sport Slotted Rotor = $406.55>,\n",
" <EBC Brakes USR7384 USR Series Sport Slotted Rotor = $413.61>,\n",
" <EBC Brakes USR1602 USR Series Sport Slotted Rotor = $615.1>]\n",
"```\n",
"These all represent different rotor models. \n",
"\n",
"**Even when both the scrubbed text and the price are identical**, the items may still refer to distinct products. For instance:\n",
"```\n",
"<5304486359 Refrigerator Door Handles Set Replacement for Frigidaire FFTR1821QW5A Refrigerator - Compatible with 5304486359 White Door Handles - UpStart Components Brand = $17.99>\n",
"<5304486359 Refrigerator Door Handles Set Replacement for Frigidaire FFTR1831QP1 Refrigerator - Compatible with 5304486359 White Door Handles - UpStart Components Brand = $17.99>\n",
"```\n",
"\n",
"### True Duplicates\n",
"Finding *true* duplicates—where the scrubbed text, price, and underlying real-world product match—seems relatively rare. The following items in the **Appliances** set, for instance, likely refer to the same physical product:\n",
"```python\n",
"{'main_category': 'Tools & Home Improvement',\n",
" 'title': 'Whirlpool 8318084 Lid Switch for Washer',\n",
" 'average_rating': 4.6,\n",
" 'rating_number': 511,\n",
" 'features': ['Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0',\n",
" 'This products adds a great value',\n",
" 'This product is manufactured in United States',\n",
" 'Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0',\n",
" 'Whirlpool 1CLSQ9549PG1, Whirlpool 1CLSQ9549PW0',\n",
" 'Whirlpool 1CLSQ9549PW1, Whirlpool 1CLSR7010PQ0',\n",
" 'Whirlpool 1CLSR7010PQ1, Whirlpool 1CLSR7300PQ0',\n",
" 'Genuine Replacement Part'],\n",
" 'description': ['Product Description',\n",
" 'Part Number 8318084 (AP3180933) replaces 1018522, AH886960, EA886960, PS886960., Easy to use and handle. This products adds a great value This product is manufactured in United States.',\n",
" 'From the Manufacturer',\n",
" 'Whirlpool 8318084 Lid Switch for Washer. Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0, Whirlpool 1CLSQ9549PG1, Whirlpool 1CLSQ9549PW0, Whirlpool 1CLSQ9549PW1, Whirlpool 1CLSR7010PQ0, Whirlpool 1CLSR7010PQ1, Whirlpool 1CLSR7300PQ0. Genuine Replacement Part.'],\n",
" 'price': '25.55',\n",
" 'images': {'hi_res': [None],\n",
" 'large': ['https://m.media-amazon.com/images/I/31QE91zX0mL._AC_.jpg'],\n",
" 'thumb': ['https://m.media-amazon.com/images/I/31QE91zX0mL._AC_US75_.jpg'],\n",
" 'variant': ['MAIN']},\n",
" 'videos': {'title': [\"Your Washer Won't Spin?\", '8318084 Washer Lid Switch'],\n",
" 'url': ['https://www.amazon.com/vdp/09c00a975b4b46198b5703483f424981?ref=dp_vse_rvc_0',\n",
" 'https://www.amazon.com/vdp/3c9b3dc3c93444978d542af3fab13c49?ref=dp_vse_rvc_1'],\n",
" 'user_id': ['', '']},\n",
" 'store': 'Whirlpool',\n",
" 'categories': ['Appliances',\n",
" 'Parts & Accessories',\n",
" 'Washer Parts & Accessories'],\n",
" 'details': '{\"Manufacturer\": \"Whirlpool\", \"Part Number\": \"8318084\", \"Item Weight\": \"1.34 ounces\", \"Product Dimensions\": \"3 x 2 x 2 inches\", \"Item model number\": \"8318084\", \"Is Discontinued By Manufacturer\": \"No\", \"Item Package Quantity\": \"1\", \"Included Components\": \"Kkk\", \"Batteries Included?\": \"No\", \"Batteries Required?\": \"No\", \"Warranty Description\": \"Kk\", \"Best Sellers Rank\": {\"Tools & Home Improvement\": 231142, \"Washer Parts & Accessories\": 1074}, \"Date First Available\": \"August 7, 2008\"}',\n",
" 'parent_asin': 'B01CT25N26',\n",
" 'bought_together': None,\n",
" 'subtitle': None,\n",
" 'author': None}\n",
"\n",
"{'main_category': 'Tools & Home Improvement',\n",
" 'title': 'Whirlpool 8318084 Lid Switch for Washer',\n",
" 'average_rating': 4.6,\n",
" 'rating_number': 514,\n",
" 'features': ['Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0',\n",
" 'This products adds a great value',\n",
" 'This product is manufactured in United States',\n",
" 'Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0',\n",
" 'Whirlpool 1CLSQ9549PG1, Whirlpool 1CLSQ9549PW0',\n",
" 'Whirlpool 1CLSQ9549PW1, Whirlpool 1CLSR7010PQ0',\n",
" 'Whirlpool 1CLSR7010PQ1, Whirlpool 1CLSR7300PQ0',\n",
" 'Genuine Replacement Part'],\n",
" 'description': ['Product Description',\n",
" 'Part Number 8318084 (AP3180933) replaces 1018522, AH886960, EA886960, PS886960., Easy to use and handle. This products adds a great value This product is manufactured in United States.',\n",
" 'From the Manufacturer',\n",
" 'Whirlpool 8318084 Lid Switch for Washer. Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0, Whirlpool 1CLSQ9549PG1, Whirlpool 1CLSQ9549PW0, Whirlpool 1CLSQ9549PW1, Whirlpool 1CLSR7010PQ0, Whirlpool 1CLSR7010PQ1, Whirlpool 1CLSR7300PQ0. Genuine Replacement Part.'],\n",
" 'price': '25.55',\n",
" 'images': {'hi_res': [None],\n",
" 'large': ['https://m.media-amazon.com/images/I/31QE91zX0mL._AC_.jpg'],\n",
" 'thumb': ['https://m.media-amazon.com/images/I/31QE91zX0mL._AC_US75_.jpg'],\n",
" 'variant': ['MAIN']},\n",
" 'videos': {'title': ['AMI PARTS,Parts Specialist'],\n",
" 'url': ['https://www.amazon.com/vdp/09a12ea79b1a4081a18909825437760b?ref=dp_vse_rvc_0'],\n",
" 'user_id': ['']},\n",
" 'store': 'Whirlpool',\n",
" 'categories': ['Appliances',\n",
" 'Parts & Accessories',\n",
" 'Washer Parts & Accessories'],\n",
" 'details': '{\"Manufacturer\": \"Whirlpool\", \"Part Number\": \"8318084\", \"Item Weight\": \"1.34 ounces\", \"Product Dimensions\": \"3 x 2 x 2 inches\", \"Item model number\": \"8318084\", \"Is Discontinued By Manufacturer\": \"No\", \"Item Package Quantity\": \"1\", \"Included Components\": \"kkk\", \"Batteries Included?\": \"No\", \"Batteries Required?\": \"No\", \"Warranty Description\": \"kk\", \"Best Sellers Rank\": {\"Tools & Home Improvement\": 166821, \"Washer Parts & Accessories\": 684}, \"Date First Available\": \"August 7, 2008\"}',\n",
" 'parent_asin': 'B0050O1UR8',\n",
" 'bought_together': None,\n",
" 'subtitle': None,\n",
" 'author': None}\n",
"```\n",
"\n",
"### Takeaway\n",
"2% of the dataset contains duplicates, but most of these represent different physical objects. It does not appear to be worthwhile to remove them from the dataset. In fact it can be better the keep them to have representative data.\n"
]
},
{
"cell_type": "markdown",
"id": "0a1d7b72-a1ab-4fc4-9065-738bd11f8058",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "403a42a2-3913-4905-9475-97509fe86c5e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|