File size: 25,361 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "28a0673e-96b5-43f2-8a8b-bd033bf851b0",
   "metadata": {},
   "source": [
    "# Add a Validation Set\n",
    "\n",
    "In the lecture, we created a curated dataset with **400,000 training items** and **2,000 test items**, but we did not include a validation (dev) set. This notebook demonstrates how to take Ed Donner’s dataset, [ed-donner/pricer-data](https://huggingface.co/datasets/ed-donner/pricer-data), and add a dev set to it.\n",
    "\n",
    "> **Note**: This notebook heavily uses snippets from the lectures’ `day2.ipynb` of Week 6.\n",
    "\n",
    "**Download the Updated Dataset**:  \n",
    "You can find the resulting dataset here: [antonawinkler/pricer-data](https://huggingface.co/datasets/antonawinkler/pricer-data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "67cedf85-8125-4322-998e-9375fe745597",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "# Standard libraries\n",
    "import os\n",
    "import random\n",
    "from itertools import chain\n",
    "from collections import Counter, defaultdict\n",
    "\n",
    "# Third-party libraries\n",
    "from dotenv import load_dotenv\n",
    "from huggingface_hub import login\n",
    "from datasets import concatenate_datasets, load_dataset, Dataset, DatasetDict\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "\n",
    "# Local modules\n",
    "from items import Item\n",
    "from loaders import ItemLoader\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7390a6aa-79cb-4dea-b6d7-de7e4b13e472",
   "metadata": {},
   "outputs": [],
   "source": [
    "# environment\n",
    "\n",
    "load_dotenv()\n",
    "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0732274a-aa6a-44fc-aee2-40dc8a8e4451",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Log in to HuggingFace\n",
    "\n",
    "hf_token = os.environ['HF_TOKEN']\n",
    "login(hf_token, add_to_git_credential=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1adcf323-de9d-4c24-a9c3-d7ae554d06ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e2b6dc50-ac5c-4cf2-af2e-968ed8ef86d7",
   "metadata": {},
   "source": [
    "## Load the Original Dataset\n",
    "\n",
    "Load the original data from McAuley-Lab/Amazon-Reviews-2023."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d1d06cd3-f3c2-44f0-a9f2-13b54ff8be5c",
   "metadata": {},
   "outputs": [],
   "source": [
    "dataset_names = [\n",
    "    \"Automotive\",\n",
    "    \"Electronics\",\n",
    "    \"Office_Products\",\n",
    "    \"Tools_and_Home_Improvement\",\n",
    "     \"Cell_Phones_and_Accessories\",\n",
    "     \"Toys_and_Games\",\n",
    "     \"Appliances\",\n",
    "     \"Musical_Instruments\",\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aa8fd0f0-509a-4298-8fcc-e499a061e1be",
   "metadata": {},
   "outputs": [],
   "source": [
    "items = []\n",
    "for dataset_name in dataset_names:\n",
    "    loader = ItemLoader(dataset_name)\n",
    "    items.extend(loader.load())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bf6b6b66-4a4b-41c2-b366-1f598cf18351",
   "metadata": {},
   "source": [
    "# Create Balanced Dataset\n",
    "\n",
    "We apply the balancing algorithm from the course."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "549a4bad-abe7-4d36-ad77-fc70ba0f151c",
   "metadata": {},
   "outputs": [],
   "source": [
    "slots = defaultdict(list)\n",
    "for item in items:\n",
    "    slots[round(item.price)].append(item)\n",
    "\n",
    "np.random.seed(42)\n",
    "random.seed(42)\n",
    "sample = []\n",
    "for i in range(1, 1000):\n",
    "    slot = slots[i]\n",
    "    if i>=240:\n",
    "        sample.extend(slot)\n",
    "    elif len(slot) <= 1200:\n",
    "        sample.extend(slot)\n",
    "    else:\n",
    "        weights = np.array([1 if item.category=='Automotive' else 5 for item in slot])\n",
    "        weights = weights / np.sum(weights)\n",
    "        selected_indices = np.random.choice(len(slot), size=1200, replace=False, p=weights)\n",
    "        selected = [slot[i] for i in selected_indices]\n",
    "        sample.extend(selected)\n",
    "\n",
    "print(f\"There are {len(sample):,} items in the sample\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "04280d2b-210a-4fad-9163-1b32a87fb990",
   "metadata": {},
   "source": [
    "The output I get is `There are 408,635 items in the sample`\n",
    "\n",
    "Since there are 400,000 items in the train set of ed-donner/pricer-data, we can aim for a 98/1/1 split."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0d1e2836-0cae-4496-a5d4-d80bc14d566b",
   "metadata": {},
   "source": [
    "## Load Ed Donner's Pricer Data Set"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a84e5a71-fc44-4cdf-9bc2-c69f80b8ee94",
   "metadata": {},
   "outputs": [],
   "source": [
    "dataset_ori = load_dataset(\"ed-donner/pricer-data\")\n",
    "train_ori = dataset_ori['train']\n",
    "test_ori = dataset_ori['test']"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e9c5c877-3d30-4013-9d0f-1e490755afeb",
   "metadata": {},
   "source": [
    "## Observation 1: Order of the Data Has Changed\n",
    "\n",
    "`dataset_without_devset` should be a subset of `sample`. The order however can be different. Let us check this.\n",
    "\n",
    "I see different results for the following two cells below, indicating that the order has changed."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "56ad8682-4d7f-4aad-9976-96eb6d9b4a5a",
   "metadata": {},
   "outputs": [],
   "source": [
    "sample[0].prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3e29a5ab-ca61-41cc-9b33-22d374681b85",
   "metadata": {},
   "outputs": [],
   "source": [
    "train_ori[0]['text']"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "469a5b3c-c1a2-461d-a88d-27aa08905b31",
   "metadata": {},
   "source": [
    "## Observation 2: Duplicate Items\n",
    "\n",
    "As an further challenge, the dataset shows duplicates with identical scrubbed descriptions. For some of these duplicates the prices are identical too (I see 1774), for others they differ (I see 6747).\n",
    "\n",
    "> **Note**: Below we use `defaultdict(list)` instead of `set` because it allows to inspect duplicates easily."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "94adffe8-edf6-4503-9f8f-34e4dfd29da9",
   "metadata": {},
   "outputs": [],
   "source": [
    "PRICE_IS = \"\\n\\nPrice is $\"\n",
    "def get_key(text, price):\n",
    "    prefix, price_is, _price_nearest_dollar = text.partition(PRICE_IS)\n",
    "    return f\"{prefix}{price_is}{price}\"\n",
    "def get_key_without_price(text):\n",
    "    prefix, price_is, _price_nearest_dollar = text.partition(PRICE_IS)\n",
    "    return f\"{prefix}\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a015ba1b-69e0-4651-850f-d93d3f078d16",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Identify duplicates by text+price\n",
    "train_ori_dict = defaultdict(list)\n",
    "for datapoint in train_ori:\n",
    "    # Creates a key from the text and price (scrubbed)\n",
    "    key = get_key(datapoint[\"text\"], datapoint[\"price\"])\n",
    "    train_ori_dict[key].append(datapoint)\n",
    "\n",
    "# Number of exact duplicates (same text AND same price)\n",
    "exact_duplicates = len(train_ori) - len(train_ori_dict)\n",
    "print(f\"There are {exact_duplicates} duplicates with the same description and price.\")\n",
    "\n",
    "# Identify duplicates by text alone (ignoring price)\n",
    "train_ori_dict_no_price = defaultdict(list)\n",
    "for datapoint in train_ori:\n",
    "    key_no_price = get_key_without_price(datapoint[\"text\"])\n",
    "    train_ori_dict_no_price[key_no_price].append(datapoint)\n",
    "\n",
    "# Number of duplicates that differ in price but share the same text\n",
    "different_price_duplicates = len(train_ori_dict) - len(train_ori_dict_no_price)\n",
    "print(f\"In addition, there are {different_price_duplicates} data points where the description is duplicated but the price is different.\")\n",
    "\n",
    "# Total number of duplicates if we consider text alone\n",
    "overall_duplicates = len(train_ori) - len(train_ori_dict_no_price)\n",
    "print(f\"Overall number of duplicates: {overall_duplicates}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e577dd8b-be0f-4ab0-b45f-9d3459b1286a",
   "metadata": {},
   "outputs": [],
   "source": [
    "test_ori_dict = defaultdict(list)\n",
    "for datapoint in test_ori:\n",
    "    key = get_key(datapoint['text'], datapoint['price'])\n",
    "    test_ori_dict[key].append(datapoint)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0198fc23-0825-4ce1-a961-1d390d86cbdc",
   "metadata": {},
   "outputs": [],
   "source": [
    "sample_dict = defaultdict(list)\n",
    "for datapoint in sample:\n",
    "    key = get_key(datapoint.prompt, datapoint.price)\n",
    "    sample_dict[key].append(datapoint)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "37f24d22-51ef-472b-8c73-e969637fa925",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Check if all data points in train_ori/test_ori are included in the new sample_dict.\n",
    "missing = []\n",
    "count_found = 0\n",
    "\n",
    "for datapoint in chain(train_ori, test_ori):\n",
    "    key = get_key(datapoint[\"text\"], datapoint[\"price\"])\n",
    "    if key not in sample_dict:\n",
    "        missing.append(datapoint)\n",
    "    else:\n",
    "        count_found += 1\n",
    "\n",
    "print(f\"We found {count_found} datapoints in sample_dict.\")\n",
    "print(f\"We are missing {len(missing)} datapoints that are not present in sample_dict.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "60c9d186-c688-4559-9b51-f0045d16829b",
   "metadata": {},
   "source": [
    "Expected output of the previous cell\n",
    "```\n",
    "We found 402000 datapoints in sample_dict.\n",
    "We are missing 0 datapoints that are not present in sample_dict.\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3b05e22d-a755-4ee5-a18b-620f7ab1df8f",
   "metadata": {},
   "source": [
    "## Add Data Points to the Test and Validation Sets\n",
    "\n",
    "Since we can match all data points in the original train and test sets from `ed-donner/pricer-data`, we’ll now incorporate any *unused* items from our balanced sample into the test set and create a new validation (dev) set. Our goal is to achieve a **98/1/1** split for train, validation, and test."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "16638cf9-03c3-46bc-8116-cafdd9e23ac9",
   "metadata": {},
   "outputs": [],
   "source": [
    "sample_not_used_yet = [datapoint for key in sample_dict.keys() - train_ori_dict.keys() - test_ori_dict.keys() for datapoint in sample_dict[key]]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "58a593ad-29a1-4b35-9753-45db75e09666",
   "metadata": {},
   "outputs": [],
   "source": [
    "# As a santity check, let us visually verify that the distribution of sample_still_available is in line with the complete sample.\n",
    "\n",
    "# Plot the distribution of prices in sample\n",
    "def plot_price_distribution(items, name):\n",
    "    prices = [float(item.price) for item in items]\n",
    "    plt.figure(figsize=(15, 10))\n",
    "    plt.title(f\"{name} - Avg {sum(prices)/len(prices):.2f} and highest {max(prices):,.2f}\\n\")\n",
    "    plt.xlabel('Price ($)')\n",
    "    plt.ylabel('Count')\n",
    "    # see https://stackoverflow.com/questions/57026223/how-to-re-scale-the-counts-in-a-matplotlib-histogram\n",
    "    (counts, bins) = np.histogram(prices, bins=range(0, 1000, 10))\n",
    "    plt.hist(bins[:-1], color=\"darkblue\", bins=bins, weights=counts/len(prices))\n",
    "    plt.show()    \n",
    "\n",
    "\n",
    "def plot_category_distribution(items, name):\n",
    "    category_counts = Counter()\n",
    "    for item in items:\n",
    "        category_counts[item.category]+=1\n",
    "    categories = sorted(category_counts.keys())\n",
    "    counts = [category_counts[category] for category in categories]\n",
    "\n",
    "    # plot a pie chart\n",
    "    plt.figure(figsize=(12, 10))\n",
    "    plt.pie(counts, labels=categories, autopct='%1.0f%%', startangle=90)\n",
    "    \n",
    "    # Add a circle at the center to create a donut chart (optional)\n",
    "    centre_circle = plt.Circle((0,0), 0.70, fc='white')\n",
    "    fig = plt.gcf()\n",
    "    fig.gca().add_artist(centre_circle)\n",
    "    plt.title(f'{name} - Categories')\n",
    "    \n",
    "    # Equal aspect ratio ensures that pie is drawn as a circle\n",
    "    plt.axis('equal')  \n",
    "\n",
    "    plt.show()\n",
    "plot_price_distribution(sample, 'Complete set')\n",
    "plot_price_distribution(sample_not_used_yet, 'Not used yet')\n",
    "plot_category_distribution(sample, 'Complete set')\n",
    "plot_category_distribution(sample_not_used_yet, 'Not used yet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ba252265-b976-426a-aefc-ebc93b153fd4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# now add the unused items to the validation and test set\n",
    "random.seed(42)\n",
    "random.shuffle(sample_not_used_yet)\n",
    "validation_items = sample_not_used_yet[:4000]\n",
    "added_test_items = sample_not_used_yet[4000:]\n",
    "\n",
    "# create Huggingface dataset\n",
    "validation_dataset = Dataset.from_dict({\"text\": [item.prompt for item in validation_items], \"price\": [item.price for item in validation_items]})\n",
    "added_test_dataset = Dataset.from_dict({\"text\": [item.prompt for item in added_test_items], \"price\": [item.price for item in added_test_items]})\n",
    "\n",
    "dataset = DatasetDict({\n",
    "    \"train\": train_ori,\n",
    "    \"test\": concatenate_datasets([test_ori, added_test_dataset]),\n",
    "    \"validation\": validation_dataset,\n",
    "})\n",
    "\n",
    "print(f\"Divided into a training set of {dataset['train'].num_rows:,} items, a validation set of {dataset['validation'].num_rows:,} items, and a test set of {dataset['test'].num_rows:,} items\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c39ac5d7-84f8-4f7d-98e1-d24651ba3a80",
   "metadata": {},
   "outputs": [],
   "source": [
    "# If you're ready to push to the hub, and fill in the dots with your HF username\n",
    "\n",
    "HF_USER = ...\n",
    "DATASET_NAME = f\"{HF_USER}/pricer-data\"\n",
    "dataset.push_to_hub(DATASET_NAME, private=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3fcb2492-ef2a-468e-8bf1-deb18eef4d9c",
   "metadata": {},
   "source": [
    "## Use of Validation Sets\n",
    "\n",
    "When you train your model in Week 7.\n",
    "\n",
    "```python\n",
    "# load the train and validation set\n",
    "train = load_dataset(DATASET_NAME, split='train[:100%]') # or less than 100%\n",
    "validation = load_dataset(DATASET_NAME, split='validation[:100%]') # or less than 100% \n",
    "\n",
    "# Define training parameters\n",
    "train_parameters = SFTConfig(\n",
    "    eval_strategy=\"steps\", # or \"epoch\"\n",
    "    eval_steps=EVAL_STEPS,\n",
    "    ...\n",
    ")\n",
    "\n",
    "# Initialize fine-tuning with validation set\n",
    "fine_tuning = SFTTrainer(\n",
    "    eval_dataset=validation,\n",
    "    ...\n",
    ")\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bceb4407-d91d-4731-9e96-189f6f953cbc",
   "metadata": {},
   "source": [
    "## A Closer Look at the Duplicates\n",
    "\n",
    "We have now created a dataset that includes a validation set and additional test data. During this process, we observed that **2% of the data contains duplicates**, where the scrubbed descriptions are identical.\n",
    "\n",
    "Duplicates can contribute to model overfitting. However, since only **2% of the dataset is duplicated**, the impact is likely minimal. Moreover, many of these duplicates actually refer to different physical objects rather than being true duplicates.\n",
    "\n",
    "### False Duplicates\n",
    "\n",
    "The “duplicates” we observe are often not duplicates in the original dataset. Minor differences in product descriptions may be removed by the scrubbing process, leading to items that *appear* identical but aren’t. For example:\n",
    "\n",
    "```\n",
    "<RinoGear Screen Protector Designed for Sony Xperia XZ Screen Protector Case Friendly Accessories Flexible Full Coverage Clear TPU Film = $0.95>\n",
    "<RinoGear (2-Pack) Screen Protector Designed for Sony Xperia XZ Screen Protector Case Friendly Accessories Flexible Full Coverage Clear TPU Film = $2.95>\n",
    "```\n",
    "\"(2-Pack)\" is removed in the scrub method.\n",
    "\n",
    "Similarly:\n",
    "```\n",
    "[<EBC Brakes USR7115 USR Series Sport Slotted Rotor = $31.22>,\n",
    " <EBC Brakes USR7314 USR Series Sport Slotted Rotor = $71.46>,\n",
    " <EBC Brakes USR7409 USR Series Sport Slotted Rotor = $88.67>,\n",
    "...\n",
    " <EBC Brakes USR7305 USR Series Sport Slotted Rotor = $406.55>,\n",
    " <EBC Brakes USR7384 USR Series Sport Slotted Rotor = $413.61>,\n",
    " <EBC Brakes USR1602 USR Series Sport Slotted Rotor = $615.1>]\n",
    "```\n",
    "These all represent different rotor models. \n",
    "\n",
    "**Even when both the scrubbed text and the price are identical**, the items may still refer to distinct products. For instance:\n",
    "```\n",
    "<5304486359 Refrigerator Door Handles Set Replacement for Frigidaire FFTR1821QW5A Refrigerator - Compatible with 5304486359 White Door Handles - UpStart Components Brand = $17.99>\n",
    "<5304486359 Refrigerator Door Handles Set Replacement for Frigidaire FFTR1831QP1 Refrigerator - Compatible with 5304486359 White Door Handles - UpStart Components Brand = $17.99>\n",
    "```\n",
    "\n",
    "### True Duplicates\n",
    "Finding *true* duplicates—where the scrubbed text, price, and underlying real-world product match—seems relatively rare. The following items in the **Appliances** set, for instance, likely refer to the same physical product:\n",
    "```python\n",
    "{'main_category': 'Tools & Home Improvement',\n",
    " 'title': 'Whirlpool 8318084 Lid Switch for Washer',\n",
    " 'average_rating': 4.6,\n",
    " 'rating_number': 511,\n",
    " 'features': ['Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0',\n",
    "  'This products adds a great value',\n",
    "  'This product is manufactured in United States',\n",
    "  'Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0',\n",
    "  'Whirlpool 1CLSQ9549PG1, Whirlpool 1CLSQ9549PW0',\n",
    "  'Whirlpool 1CLSQ9549PW1, Whirlpool 1CLSR7010PQ0',\n",
    "  'Whirlpool 1CLSR7010PQ1, Whirlpool 1CLSR7300PQ0',\n",
    "  'Genuine Replacement Part'],\n",
    " 'description': ['Product Description',\n",
    "  'Part Number 8318084 (AP3180933) replaces 1018522, AH886960, EA886960, PS886960., Easy to use and handle. This products adds a great value This product is manufactured in United States.',\n",
    "  'From the Manufacturer',\n",
    "  'Whirlpool 8318084 Lid Switch for Washer. Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0, Whirlpool 1CLSQ9549PG1, Whirlpool 1CLSQ9549PW0, Whirlpool 1CLSQ9549PW1, Whirlpool 1CLSR7010PQ0, Whirlpool 1CLSR7010PQ1, Whirlpool 1CLSR7300PQ0. Genuine Replacement Part.'],\n",
    " 'price': '25.55',\n",
    " 'images': {'hi_res': [None],\n",
    "  'large': ['https://m.media-amazon.com/images/I/31QE91zX0mL._AC_.jpg'],\n",
    "  'thumb': ['https://m.media-amazon.com/images/I/31QE91zX0mL._AC_US75_.jpg'],\n",
    "  'variant': ['MAIN']},\n",
    " 'videos': {'title': [\"Your Washer Won't Spin?\", '8318084 Washer Lid Switch'],\n",
    "  'url': ['https://www.amazon.com/vdp/09c00a975b4b46198b5703483f424981?ref=dp_vse_rvc_0',\n",
    "   'https://www.amazon.com/vdp/3c9b3dc3c93444978d542af3fab13c49?ref=dp_vse_rvc_1'],\n",
    "  'user_id': ['', '']},\n",
    " 'store': 'Whirlpool',\n",
    " 'categories': ['Appliances',\n",
    "  'Parts & Accessories',\n",
    "  'Washer Parts & Accessories'],\n",
    " 'details': '{\"Manufacturer\": \"Whirlpool\", \"Part Number\": \"8318084\", \"Item Weight\": \"1.34 ounces\", \"Product Dimensions\": \"3 x 2 x 2 inches\", \"Item model number\": \"8318084\", \"Is Discontinued By Manufacturer\": \"No\", \"Item Package Quantity\": \"1\", \"Included Components\": \"Kkk\", \"Batteries Included?\": \"No\", \"Batteries Required?\": \"No\", \"Warranty Description\": \"Kk\", \"Best Sellers Rank\": {\"Tools & Home Improvement\": 231142, \"Washer Parts & Accessories\": 1074}, \"Date First Available\": \"August 7, 2008\"}',\n",
    " 'parent_asin': 'B01CT25N26',\n",
    " 'bought_together': None,\n",
    " 'subtitle': None,\n",
    " 'author': None}\n",
    "\n",
    "{'main_category': 'Tools & Home Improvement',\n",
    " 'title': 'Whirlpool 8318084 Lid Switch for Washer',\n",
    " 'average_rating': 4.6,\n",
    " 'rating_number': 514,\n",
    " 'features': ['Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0',\n",
    "  'This products adds a great value',\n",
    "  'This product is manufactured in United States',\n",
    "  'Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0',\n",
    "  'Whirlpool 1CLSQ9549PG1, Whirlpool 1CLSQ9549PW0',\n",
    "  'Whirlpool 1CLSQ9549PW1, Whirlpool 1CLSR7010PQ0',\n",
    "  'Whirlpool 1CLSR7010PQ1, Whirlpool 1CLSR7300PQ0',\n",
    "  'Genuine Replacement Part'],\n",
    " 'description': ['Product Description',\n",
    "  'Part Number 8318084 (AP3180933) replaces 1018522, AH886960, EA886960, PS886960., Easy to use and handle. This products adds a great value This product is manufactured in United States.',\n",
    "  'From the Manufacturer',\n",
    "  'Whirlpool 8318084 Lid Switch for Washer. Works with the following models: Whirlpool 1CLBR5432PQ0, Whirlpool 1CLBR5432PQ1, Whirlpool 1CLSQ9549PG0, Whirlpool 1CLSQ9549PG1, Whirlpool 1CLSQ9549PW0, Whirlpool 1CLSQ9549PW1, Whirlpool 1CLSR7010PQ0, Whirlpool 1CLSR7010PQ1, Whirlpool 1CLSR7300PQ0. Genuine Replacement Part.'],\n",
    " 'price': '25.55',\n",
    " 'images': {'hi_res': [None],\n",
    "  'large': ['https://m.media-amazon.com/images/I/31QE91zX0mL._AC_.jpg'],\n",
    "  'thumb': ['https://m.media-amazon.com/images/I/31QE91zX0mL._AC_US75_.jpg'],\n",
    "  'variant': ['MAIN']},\n",
    " 'videos': {'title': ['AMI PARTS,Parts Specialist'],\n",
    "  'url': ['https://www.amazon.com/vdp/09a12ea79b1a4081a18909825437760b?ref=dp_vse_rvc_0'],\n",
    "  'user_id': ['']},\n",
    " 'store': 'Whirlpool',\n",
    " 'categories': ['Appliances',\n",
    "  'Parts & Accessories',\n",
    "  'Washer Parts & Accessories'],\n",
    " 'details': '{\"Manufacturer\": \"Whirlpool\", \"Part Number\": \"8318084\", \"Item Weight\": \"1.34 ounces\", \"Product Dimensions\": \"3 x 2 x 2 inches\", \"Item model number\": \"8318084\", \"Is Discontinued By Manufacturer\": \"No\", \"Item Package Quantity\": \"1\", \"Included Components\": \"kkk\", \"Batteries Included?\": \"No\", \"Batteries Required?\": \"No\", \"Warranty Description\": \"kk\", \"Best Sellers Rank\": {\"Tools & Home Improvement\": 166821, \"Washer Parts & Accessories\": 684}, \"Date First Available\": \"August 7, 2008\"}',\n",
    " 'parent_asin': 'B0050O1UR8',\n",
    " 'bought_together': None,\n",
    " 'subtitle': None,\n",
    " 'author': None}\n",
    "```\n",
    "\n",
    "### Takeaway\n",
    "2% of the dataset contains duplicates, but most of these represent different physical objects. It does not appear to be worthwhile to remove them from the dataset. In fact it can be better the keep them to have representative data.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0a1d7b72-a1ab-4fc4-9065-738bd11f8058",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "403a42a2-3913-4905-9475-97509fe86c5e",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}