File size: 9,398 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "db8736a7-ed94-441c-9556-831fa57b5a10",
   "metadata": {},
   "source": [
    "# The Product Pricer Continued...\n",
    "\n",
    "## Testing Gemini-1.5-pro model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "681c717b-4c24-4ac3-a5f3-3c5881d6e70a",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import re\n",
    "from dotenv import load_dotenv\n",
    "import matplotlib.pyplot as plt\n",
    "import pickle\n",
    "import google.generativeai as google_genai\n",
    "import time"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "21a3833e-4093-43b0-8f7b-839c50b911ea",
   "metadata": {},
   "outputs": [],
   "source": [
    "from items import Item\n",
    "from testing import Tester "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "36d05bdc-0155-4c72-a7ee-aa4e614ffd3c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# environment\n",
    "load_dotenv()\n",
    "os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b0a6fb86-74a4-403c-ab25-6db2d74e9d2b",
   "metadata": {},
   "outputs": [],
   "source": [
    "google_genai.configure()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c830ed3e-24ee-4af6-a07b-a1bfdcd39278",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5c9b05f4-c9eb-462c-8d86-de9140a2d985",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load in the pickle files that are located in the `pickled_dataset` folder\n",
    "with open('train.pkl', 'rb') as file:\n",
    "    train = pickle.load(file)\n",
    "\n",
    "with open('test.pkl', 'rb') as file:\n",
    "    test = pickle.load(file)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fc5c807b-c14c-458e-8cca-32bc0cc5b7c3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to create the messages format required for Gemini 1.5 Pro\n",
    "# This function prepares the system and user messages in the format expected by Gemini models.\n",
    "def gemini_messages_for(item):\n",
    "    system_message = \"You estimate prices of items. Reply only with the price, no explanation\"\n",
    "    \n",
    "    # Modify the test prompt by removing \"to the nearest dollar\" and \"Price is $\"\n",
    "    # This ensures that the model receives a cleaner, simpler prompt.\n",
    "    user_prompt = item.test_prompt().replace(\" to the nearest dollar\", \"\").replace(\"\\n\\nPrice is $\", \"\")\n",
    "\n",
    "    # Reformat messages to Gemini’s expected format: messages = [{'role':'user', 'parts': ['hello']}]\n",
    "    return [\n",
    "        {\"role\": \"system\", \"parts\": [system_message]},  # System-level instruction\n",
    "        {\"role\": \"user\", \"parts\": [user_prompt]},       # User's query\n",
    "        {\"role\": \"model\", \"parts\": [\"Price is $\"]}  # Assistant's expected prefix for response\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6da66bb-bc4b-49ad-9224-a388470ef20b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Example usage of the gemini_messages_for function\n",
    "gemini_messages_for(test[0])  # Generate message structure for the first test item"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b1af1888-f94a-4106-b0d8-8a70939eec4e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Utility function to extract the numerical price from a given string\n",
    "# This function removes currency symbols and commas, then extracts the first number found.\n",
    "def get_price(s):\n",
    "    s = s.replace('$', '').replace(',', '')  # Remove currency symbols and formatting\n",
    "    match = re.search(r\"[-+]?\\d*\\.\\d+|\\d+\", s)  # Regular expression to find a number\n",
    "    return float(match.group()) if match else 0  # Convert matched value to float, return 0 if no match"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a053c1a9-f86e-427c-a6be-ed8ec7bd63a5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Example usage of get_price function\n",
    "get_price(\"The price is roughly $99.99 because blah blah\")  # Expected output: 99.99"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "34a88e34-1719-4d08-adbe-adb69dfe5e83",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to get the estimated price using Gemini 1.5 Pro\n",
    "def gemini_1_point_5_pro(item):\n",
    "    messages = gemini_messages_for(item)  # Generate messages for the model\n",
    "    system_message = messages[0]['parts'][0]  # Extract system-level instruction\n",
    "    user_messages = messages[1:]  # Remove system message from messages list\n",
    "    \n",
    "    # Initialize Gemini 1.5 Pro model with system instruction\n",
    "    gemini = google_genai.GenerativeModel(\n",
    "        model_name=\"gemini-1.5-pro\",\n",
    "        system_instruction=system_message\n",
    "    )\n",
    "\n",
    "    # Generate response using Gemini API\n",
    "    response = gemini.generate_content(\n",
    "        contents=user_messages,\n",
    "        generation_config=google_genai.GenerationConfig(max_output_tokens=5)\n",
    "    )\n",
    "\n",
    "    # Extract text response and convert to numerical price\n",
    "    return get_price(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d89b10bb-8ebb-42ef-9146-f6e64e6849f9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Example usage:\n",
    "gemini_1_point_5_pro(test[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "89ad07e6-a28a-4625-b61e-d2ce12d440fc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Retrieve the actual price of the test item (for comparison)\n",
    "test[0].price    # Output: 374.41"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "384f28e5-e51f-4cd3-8d74-30a8275530db",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Test the function for gemini-1.5 pro using the Tester framework\n",
    "Tester.test(gemini_1_point_5_pro, test)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9b627291-b02e-48dd-9130-703498135ddf",
   "metadata": {},
   "source": [
    "## Five, Gemini-2.0-flash"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0ee393a9-7afd-404f-92f2-a64bb4d5fb8b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to get the estimated price using Gemini-2.0-flash-exp\n",
    "def gemini_2_point_0_flash_exp(item):\n",
    "    messages = gemini_messages_for(item)  # Generate messages for the model\n",
    "    system_message = messages[0]['parts'][0]  # Extract system-level instruction\n",
    "    user_messages = messages[1:]  # Remove system message from messages list\n",
    "    \n",
    "    # Initialize Gemini-2.0-flash-exp model with system instruction\n",
    "    gemini = google_genai.GenerativeModel(\n",
    "        model_name=\"gemini-2.0-flash-exp\",\n",
    "        system_instruction=system_message\n",
    "    )\n",
    "\n",
    "    # Adding a delay to avoid hitting the API rate limit and getting a \"ResourceExhausted: 429\" error\n",
    "    time.sleep(5)\n",
    "    \n",
    "    # Generate response using Gemini API\n",
    "    response = gemini.generate_content(\n",
    "        contents=user_messages,\n",
    "        generation_config=google_genai.GenerationConfig(max_output_tokens=5)\n",
    "    )\n",
    "\n",
    "    # Extract text response and convert to numerical price\n",
    "    return get_price(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "203dc6f1-309e-46eb-9957-e06eed803cc8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Example usage:\n",
    "gemini_2_point_0_flash_exp(test[0])  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a844df09-d347-40b9-bb79-006ec4160aab",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Retrieve the actual price of the test item (for comparison)\n",
    "test[0].price    # Output: 374.41"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "500b45c7-e5c1-44f2-95c9-1c3c06365339",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Test the function for gemini-2.0-flash-exp using the Tester framework\n",
    "Tester.test(gemini_2_point_0_flash_exp, test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "746b2d12-ba92-48e2-9065-c9a108d1593b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}