File size: 11,822 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "dfe37963-1af6-44fc-a841-8e462443f5e6",
   "metadata": {},
   "source": [
    "## Expert Knowledge Worker\n",
    "\n",
    "### A question answering agent that is an expert knowledge worker\n",
    "### To be used by employees of Insurellm, an Insurance Tech company\n",
    "### The agent needs to be accurate and the solution should be low cost.\n",
    "\n",
    "This project will use RAG (Retrieval Augmented Generation) to ensure our question/answering assistant has high accuracy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ba2779af-84ef-4227-9e9e-6eaf0df87e77",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import glob\n",
    "from dotenv import load_dotenv\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "802137aa-8a74-45e0-a487-d1974927d7ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports for langchain and Chroma and plotly\n",
    "\n",
    "from langchain.document_loaders import DirectoryLoader, TextLoader\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.schema import Document\n",
    "from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
    "from langchain_chroma import Chroma\n",
    "import numpy as np\n",
    "from sklearn.manifold import TSNE\n",
    "import plotly.graph_objects as go"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "58c85082-e417-4708-9efe-81a5d55d1424",
   "metadata": {},
   "outputs": [],
   "source": [
    "# price is a factor for our company, so we're going to use a low cost model\n",
    "\n",
    "MODEL = \"gpt-4o-mini\"\n",
    "db_name = \"vector_db\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ee78efcb-60fe-449e-a944-40bab26261af",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "730711a9-6ffe-4eee-8f48-d6cfb7314905",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read in documents using LangChain's loaders\n",
    "# Take everything in all the sub-folders of our knowledgebase\n",
    "\n",
    "folders = glob.glob(\"knowledge-base/*\")\n",
    "\n",
    "# With thanks to CG and Jon R, students on the course, for this fix needed for some users \n",
    "text_loader_kwargs = {'encoding': 'utf-8'}\n",
    "# If that doesn't work, some Windows users might need to uncomment the next line instead\n",
    "# text_loader_kwargs={'autodetect_encoding': True}\n",
    "\n",
    "documents = []\n",
    "for folder in folders:\n",
    "    doc_type = os.path.basename(folder)\n",
    "    loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)\n",
    "    folder_docs = loader.load()\n",
    "    for doc in folder_docs:\n",
    "        doc.metadata[\"doc_type\"] = doc_type\n",
    "        documents.append(doc)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f065d4b1-80b7-4e15-abd4-60a83e752ea8",
   "metadata": {},
   "source": [
    "# Please note:\n",
    "\n",
    "In the next cell, we split the text into chunks.\n",
    "\n",
    "2 students let me know that the next cell crashed their computer.  \n",
    "They were able to fix it by changing the chunk_size from 1,000 to 2,000 and the chunk_overlap from 200 to 400.  \n",
    "This shouldn't be required; but if it happens to you, please make that change!  \n",
    "(Note that LangChain may give a warning about a chunk being larger than 1,000 - this can be safely ignored).\n",
    "\n",
    "_With much thanks to Steven W and Nir P for this valuable contribution._"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7310c9c8-03c1-4efc-a104-5e89aec6db1a",
   "metadata": {},
   "outputs": [],
   "source": [
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
    "chunks = text_splitter.split_documents(documents)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cd06e02f-6d9b-44cc-a43d-e1faa8acc7bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(chunks)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2c54b4b6-06da-463d-bee7-4dd456c2b887",
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_types = set(chunk.metadata['doc_type'] for chunk in chunks)\n",
    "print(f\"Document types found: {', '.join(doc_types)}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "77f7d2a6-ccfa-425b-a1c3-5e55b23bd013",
   "metadata": {},
   "source": [
    "## A sidenote on Embeddings, and \"Auto-Encoding LLMs\"\n",
    "\n",
    "We will be mapping each chunk of text into a Vector that represents the meaning of the text, known as an embedding.\n",
    "\n",
    "OpenAI offers a model to do this, which we will use by calling their API with some LangChain code.\n",
    "\n",
    "This model is an example of an \"Auto-Encoding LLM\" which generates an output given a complete input.\n",
    "It's different to all the other LLMs we've discussed today, which are known as \"Auto-Regressive LLMs\", and generate future tokens based only on past context.\n",
    "\n",
    "Another example of an Auto-Encoding LLMs is BERT from Google. In addition to embedding, Auto-encoding LLMs are often used for classification.\n",
    "\n",
    "### Sidenote\n",
    "\n",
    "In week 8 we will return to RAG and vector embeddings, and we will use an open-source vector encoder so that the data never leaves our computer - that's an important consideration when building enterprise systems and the data needs to remain internal."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "78998399-ac17-4e28-b15f-0b5f51e6ee23",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
    "\n",
    "embeddings = OpenAIEmbeddings()\n",
    "\n",
    "# If you would rather use the free Vector Embeddings from HuggingFace sentence-transformers\n",
    "# Then replace embeddings = OpenAIEmbeddings()\n",
    "# with:\n",
    "# from langchain.embeddings import HuggingFaceEmbeddings\n",
    "# embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "763e51ff-5787-4a56-8176-36b7c5796fe3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Check if a Chroma Datastore already exists - if so, delete the collection to start from scratch\n",
    "\n",
    "if os.path.exists(db_name):\n",
    "    Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "99fe3a37-480f-4d55-be48-120588d5846b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create our Chroma vectorstore!\n",
    "\n",
    "vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
    "print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "057868f6-51a6-4087-94d1-380145821550",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Get one vector and find how many dimensions it has\n",
    "\n",
    "collection = vectorstore._collection\n",
    "sample_embedding = collection.get(limit=1, include=[\"embeddings\"])[\"embeddings\"][0]\n",
    "dimensions = len(sample_embedding)\n",
    "print(f\"The vectors have {dimensions:,} dimensions\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "61e393a0-dd4c-419f-842f-60c1cb3b716b",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "b0d45462-a818-441c-b010-b85b32bcf618",
   "metadata": {},
   "source": [
    "## Visualizing the Vector Store\n",
    "\n",
    "Let's take a minute to look at the documents and their embedding vectors to see what's going on."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b98adf5e-d464-4bd2-9bdf-bc5b6770263b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Prework\n",
    "\n",
    "result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n",
    "vectors = np.array(result['embeddings'])\n",
    "documents = result['documents']\n",
    "doc_types = [metadata['doc_type'] for metadata in result['metadatas']]\n",
    "colors = [['blue', 'green', 'red', 'orange'][['products', 'employees', 'contracts', 'company'].index(t)] for t in doc_types]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "427149d5-e5d8-4abd-bb6f-7ef0333cca21",
   "metadata": {},
   "outputs": [],
   "source": [
    "# We humans find it easier to visalize things in 2D!\n",
    "# Reduce the dimensionality of the vectors to 2D using t-SNE\n",
    "# (t-distributed stochastic neighbor embedding)\n",
    "\n",
    "tsne = TSNE(n_components=2, random_state=42)\n",
    "reduced_vectors = tsne.fit_transform(vectors)\n",
    "\n",
    "# Create the 2D scatter plot\n",
    "fig = go.Figure(data=[go.Scatter(\n",
    "    x=reduced_vectors[:, 0],\n",
    "    y=reduced_vectors[:, 1],\n",
    "    mode='markers',\n",
    "    marker=dict(size=5, color=colors, opacity=0.8),\n",
    "    text=[f\"Type: {t}<br>Text: {d[:100]}...\" for t, d in zip(doc_types, documents)],\n",
    "    hoverinfo='text'\n",
    ")])\n",
    "\n",
    "fig.update_layout(\n",
    "    title='2D Chroma Vector Store Visualization',\n",
    "    scene=dict(xaxis_title='x',yaxis_title='y'),\n",
    "    width=800,\n",
    "    height=600,\n",
    "    margin=dict(r=20, b=10, l=10, t=40)\n",
    ")\n",
    "\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e1418e88-acd5-460a-bf2b-4e6efc88e3dd",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's try 3D!\n",
    "\n",
    "tsne = TSNE(n_components=3, random_state=42)\n",
    "reduced_vectors = tsne.fit_transform(vectors)\n",
    "\n",
    "# Create the 3D scatter plot\n",
    "fig = go.Figure(data=[go.Scatter3d(\n",
    "    x=reduced_vectors[:, 0],\n",
    "    y=reduced_vectors[:, 1],\n",
    "    z=reduced_vectors[:, 2],\n",
    "    mode='markers',\n",
    "    marker=dict(size=5, color=colors, opacity=0.8),\n",
    "    text=[f\"Type: {t}<br>Text: {d[:100]}...\" for t, d in zip(doc_types, documents)],\n",
    "    hoverinfo='text'\n",
    ")])\n",
    "\n",
    "fig.update_layout(\n",
    "    title='3D Chroma Vector Store Visualization',\n",
    "    scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z'),\n",
    "    width=900,\n",
    "    height=700,\n",
    "    margin=dict(r=20, b=10, l=10, t=40)\n",
    ")\n",
    "\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9b3ada26-b4b7-42fc-b943-933c14adf89b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}