Spaces:
Sleeping
Sleeping
File size: 7,540 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
{
"cells": [
{
"cell_type": "markdown",
"id": "dfe37963-1af6-44fc-a841-8e462443f5e6",
"metadata": {},
"source": [
"## Expert Knowledge Worker\n",
"\n",
"### A question answering agent that is an expert knowledge worker\n",
"### To be used by employees of Insurellm, an Insurance Tech company\n",
"### The agent needs to be accurate and the solution should be low cost.\n",
"\n",
"This project will use RAG (Retrieval Augmented Generation) to ensure our question/answering assistant has high accuracy.\n",
"\n",
"This first implementation will use a simple, brute-force type of RAG..\n",
"\n",
"### Sidenote: Business applications of this week's projects\n",
"\n",
"RAG is perhaps the most immediately applicable technique of anything that we cover in the course! In fact, there are commercial products that do precisely what we build this week: nuanced querying across large databases of information, such as company contracts or product specs. RAG gives you a quick-to-market, low cost mechanism for adapting an LLM to your business area."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba2779af-84ef-4227-9e9e-6eaf0df87e77",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import glob\n",
"from dotenv import load_dotenv\n",
"import gradio as gr\n",
"from openai import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58c85082-e417-4708-9efe-81a5d55d1424",
"metadata": {},
"outputs": [],
"source": [
"# price is a factor for our company, so we're going to use a low cost model\n",
"\n",
"MODEL = \"gpt-4o-mini\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee78efcb-60fe-449e-a944-40bab26261af",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv(override=True)\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e0652c2-3d76-40c7-8313-9dc1895155a8",
"metadata": {},
"outputs": [],
"source": [
"# With massive thanks to student Dr John S. for fixing a bug in the below for Windows users!\n",
"\n",
"context = {}\n",
"\n",
"employees = glob.glob(\"knowledge-base/employees/*\")\n",
"\n",
"for employee in employees:\n",
" name = employee.split(' ')[-1][:-3]\n",
" doc = \"\"\n",
" with open(employee, \"r\", encoding=\"utf-8\") as f:\n",
" doc = f.read()\n",
" context[name]=doc"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2c85a11b-b04d-4066-b243-f96139ca106f",
"metadata": {},
"outputs": [],
"source": [
"context[\"Lancaster\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1d231f9-091e-4c72-b0f8-6af578a74e22",
"metadata": {},
"outputs": [],
"source": [
"products = glob.glob(\"knowledge-base/products/*\")\n",
"\n",
"for product in products:\n",
" name = product.split(os.sep)[-1][:-3]\n",
" doc = \"\"\n",
" with open(product, \"r\", encoding=\"utf-8\") as f:\n",
" doc = f.read()\n",
" context[name]=doc"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aba46a57-d973-4195-8fe3-70fc60687192",
"metadata": {},
"outputs": [],
"source": [
"context.keys()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "129c7d1e-0094-4479-9459-f9360b95f244",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are an expert in answering accurate questions about Insurellm, the Insurance Tech company. Give brief, accurate answers. If you don't know the answer, say so. Do not make anything up if you haven't been provided with relevant context.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d40e390b-c110-42d5-8d80-daf3295b9862",
"metadata": {},
"outputs": [],
"source": [
"def get_relevant_context(message):\n",
" relevant_context = []\n",
" for context_title, context_details in context.items():\n",
" if context_title.lower() in message.lower():\n",
" relevant_context.append(context_details)\n",
" return relevant_context "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d126cfcb-e85c-4dd9-837e-9d2b8436d4b1",
"metadata": {},
"outputs": [],
"source": [
"get_relevant_context(\"Who is lancaster?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d94c768d-c47a-4c34-85e9-7b786da96507",
"metadata": {},
"outputs": [],
"source": [
"get_relevant_context(\"Who is Avery and what is carllm?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a7cef7f-f214-4bac-8217-3f9ab9ba1bf0",
"metadata": {},
"outputs": [],
"source": [
"def add_context(message):\n",
" relevant_context = get_relevant_context(message)\n",
" if relevant_context:\n",
" message += \"\\n\\nThe following additional context might be relevant in answering this question:\\n\\n\"\n",
" for relevant in relevant_context:\n",
" message += relevant + \"\\n\\n\"\n",
" return message"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b36399c-440b-4049-9d39-68d208283c71",
"metadata": {},
"outputs": [],
"source": [
"print(add_context(\"Who is Alex Lancaster?\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "968e7bf2-e862-4679-a11f-6c1efb6ec8ca",
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}] + history\n",
" message = add_context(message)\n",
" messages.append({\"role\": \"user\", \"content\": message})\n",
"\n",
" stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True)\n",
"\n",
" response = \"\"\n",
" for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" yield response"
]
},
{
"cell_type": "markdown",
"id": "bbbcb659-13ce-47ab-8a5e-01b930494964",
"metadata": {},
"source": [
"## Now we will bring this up in Gradio using the Chat interface -\n",
"\n",
"A quick and easy way to prototype a chat with an LLM"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c3536590-85c7-4155-bd87-ae78a1467670",
"metadata": {},
"outputs": [],
"source": [
"view = gr.ChatInterface(chat, type=\"messages\").launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "48873d11-2fbd-4329-af27-46c781788561",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|