Spaces:
Sleeping
Sleeping
File size: 7,338 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
{
"cells": [
{
"cell_type": "markdown",
"id": "ec3276da-2cc6-4558-beb3-00cf4dc1ac0a",
"metadata": {},
"source": [
"# Generating answers with source citations\n",
"### This Notebook contains a sample showing how to generate answers with inline & end of the answer citations pointing to the original source document used to answer the question\n",
"<div class=\"alert alert-block alert-warning\">\n",
"<h4><u>Prerequisite:</u> Please run the <a href=\"../day5.ipynb\" >Day 5 notebook</a> to create & populate the vector database before executing this notebook</h4>\n",
"</div>\n",
"\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59921cc4-ecb7-460a-a15a-1b4490f3cf25",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"import os\n",
"from dotenv import load_dotenv\n",
"import gradio as gr\n",
"from openai import OpenAI\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain_chroma import Chroma\n",
"from IPython.display import Markdown, display, update_display"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba5d79d2-d7fb-473e-bd0f-79abbb7b69ea",
"metadata": {},
"outputs": [],
"source": [
"load_dotenv()\n",
"MODEL = \"gpt-4o-mini\"\n",
"db_name = \"vector_db\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b34c33fc-b7d8-4880-ba8f-0db51b24a8a8",
"metadata": {},
"outputs": [],
"source": [
"openai = OpenAI()\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c92170d-f4e9-45d4-8b72-f3779103a551",
"metadata": {},
"outputs": [],
"source": [
"# Load the existing vector database that you created from the Day5 notebook\n",
"if os.path.exists(f\"..\\\\{db_name}\"):\n",
" vectorstore = Chroma(embedding_function=embeddings, persist_directory=f\"..\\\\{db_name}\")\n",
" print(f\"Vectorstore loaded with {vectorstore._collection.count()} documents\")\n",
"else:\n",
" print(\"Vector store doesn't exist. Please run the Day 5 notebook first to create Chroma Vector DB & injest the data.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "78809d3b-bea3-436d-bb79-6adc93757a91",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"\"\"You are an assistant for question-answering tasks. \n",
"Use the following pieces of retrieved context to answer the question. \n",
"If you don't know the answer, just say that you don't know.\n",
"Use three sentences maximum and keep the answer concise.\n",
"Use the following markdown format to answer the question along with the Source used to generate the answer, add inline citation for each sentence & add end of the answer citations:\n",
"'CEO of Insurellm is Avery Lancaster [[1]](Source Link 1). Who is also a co-founder [[2]](Source Link 2)\n",
"Citations: (Note: No duplicates allowed in the below list)\n",
"\n",
"[1 - Source Title 1](Link 1)\n",
"[2 - Source Title 2](Link 2)\n",
"...\n",
"[n - Source Title n](Link n)'\n",
" \n",
"Example answer: \n",
"'CEO of Insurellm is Avery Lancaster [[1]](knowledge-base\\\\company\\\\about.md). Who is also a co-founder [[2]](knowledge-base\\\\employees\\\\Avery Lancaster.md)\n",
"Citations:\n",
"\n",
"[1 - About Company](knowledge-base\\\\company\\\\about.md)\n",
"[2 - Avery Lancaster employees](knowledge-base\\\\employees\\\\Avery Lancaster.md)'\n",
" \n",
"Important Note: Have unique end of the answer citations. Don't give duplicate citation numbers for the same source link, reuse the same citation number if the same source link is referenced multiple times.\n",
"'\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dee6afbd-03af-448e-b587-991c555930bf",
"metadata": {},
"outputs": [],
"source": [
"# Change the below port if jupyter notebook is running in a different port\n",
"jupyter_notebook_port = \"8888\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ed36033b-a67e-4278-b990-c52255274b63",
"metadata": {},
"outputs": [],
"source": [
"def generate_user_prompt(message):\n",
" retriever = vectorstore.as_retriever()\n",
" results = retriever.invoke(message)\n",
" doc_chunk_merged = \"\"\n",
" for doc_chunk in results: \n",
" source = f\"http://localhost:{jupyter_notebook_port}/lab/tree/week5/\" + doc_chunk.metadata.get(\"source\").replace(\"\\\\\",\"/\")\n",
" title = doc_chunk.metadata.get(\"doc_type\") + \" -> \" + source.split('\\\\')[-1][:-3]\n",
" doc_chunk_merged += f\"Content: {doc_chunk.page_content}\\n Source title: {title}\\n Source link: {source}\\n\\n\"\n",
" return f\"Question: {message}\\n {doc_chunk_merged}\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "26281283-7792-486f-96b0-c781952b6078",
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": generate_user_prompt(message)}]\n",
" stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True, seed=3, max_tokens=1000)\n",
" response = \"\"\n",
" for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" yield response"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "44518359-4e55-4679-8460-7406a85cc26f",
"metadata": {},
"outputs": [],
"source": [
"#Testing the Answer generation - 1\n",
"user_prompt = \"Please explain what Insurellm is in a couple of sentences\"\n",
"\n",
"display_handle = display(Markdown(\"\"), display_id=True)\n",
"for chunk in chat(user_prompt, []):\n",
" update_display(Markdown(chunk), display_id=display_handle.display_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f6ad1f9d-fd9e-4846-ad83-a33c96f38b72",
"metadata": {},
"outputs": [],
"source": [
"#Testing the Answer generation - 2\n",
"user_prompt = \"Please explain in short on what products are available in Insurellm\"\n",
"\n",
"display_handle = display(Markdown(\"\"), display_id=True)\n",
"for chunk in chat(user_prompt, []):\n",
" update_display(Markdown(chunk), display_id=display_handle.display_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d50adb06-e901-41a8-99ed-6f3b4bfacd40",
"metadata": {},
"outputs": [],
"source": [
"#Launch Gradio\n",
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|