File size: 6,749 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# # Document loading, retrieval methods and text splitting\n",
    "# !pip install -qU langchain langchain_community\n",
    "\n",
    "# # Local vector store via Chroma\n",
    "# !pip install -qU langchain_chroma\n",
    "\n",
    "# # Local inference and embeddings via Ollama\n",
    "# !pip install -qU langchain_ollama\n",
    "\n",
    "# # Web Loader\n",
    "# !pip install -qU beautifulsoup4\n",
    "\n",
    "# # Pull the model first\n",
    "# !ollama pull nomic-embed-text\n",
    "\n",
    "# !pip install -qU pypdf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Imports\n",
    "import os\n",
    "import glob\n",
    "from dotenv import load_dotenv\n",
    "import gradio as gr\n",
    "from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader\n",
    "from langchain_text_splitters import CharacterTextSplitter, RecursiveCharacterTextSplitter\n",
    "from langchain_chroma import Chroma\n",
    "from langchain_ollama import OllamaEmbeddings\n",
    "from langchain_ollama import ChatOllama\n",
    "from langchain_core.output_parsers import StrOutputParser\n",
    "from langchain_core.prompts import ChatPromptTemplate\n",
    "from langchain_core.runnables import RunnablePassthrough"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read in documents using LangChain's loaders\n",
    "# Take everything in all the sub-folders of our knowledgebase\n",
    "\n",
    "folders = glob.glob(\"Manuals/*\")\n",
    "\n",
    "def add_metadata(doc, doc_type):\n",
    "    doc.metadata[\"doc_type\"] = doc_type\n",
    "    return doc\n",
    "\n",
    "documents = []\n",
    "for folder in folders:\n",
    "    doc_type = os.path.basename(folder)\n",
    "    loader = DirectoryLoader(folder, glob=\"**/*.pdf\", loader_cls=PyPDFLoader)\n",
    "    folder_docs = loader.load()\n",
    "    documents.extend([add_metadata(doc, doc_type) for doc in folder_docs])\n",
    "\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
    "chunks = text_splitter.split_documents(documents)\n",
    "\n",
    "print(f\"Total number of chunks: {len(chunks)}\")\n",
    "print(f\"Document types found: {set(doc.metadata['doc_type'] for doc in documents)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
    "# Chroma is a popular open source Vector Database based on SQLLite\n",
    "DB_NAME = \"vector_db\"\n",
    "\n",
    "embeddings = OllamaEmbeddings(model=\"nomic-embed-text\")\n",
    "\n",
    "# Delete if already exists\n",
    "\n",
    "if os.path.exists(DB_NAME):\n",
    "    Chroma(persist_directory=DB_NAME, embedding_function=embeddings).delete_collection()\n",
    "\n",
    "# Create vectorstore\n",
    "\n",
    "vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=DB_NAME)\n",
    "print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#run a quick test - should return a list of documents = 4\n",
    "question = \"What kind of grill is the Spirt II?\"\n",
    "docs = vectorstore.similarity_search(question)\n",
    "len(docs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "docs[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a new Chat with Ollama\n",
    "from langchain.memory import ConversationBufferMemory\n",
    "from langchain.chains import ConversationalRetrievalChain\n",
    "MODEL = \"llama3.2:latest\"\n",
    "llm = ChatOllama(temperature=0.7, model=MODEL)\n",
    "\n",
    "# set up the conversation memory for the chat\n",
    "memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
    "\n",
    "# the retriever is an abstraction over the VectorStore that will be used during RAG\n",
    "retriever = vectorstore.as_retriever()\n",
    "\n",
    "# putting it together: set up the conversation chain with the GPT 3.5 LLM, the vector store and memory\n",
    "conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's try a simple question\n",
    "\n",
    "query = \"How do I change the water bottle ?\"\n",
    "result = conversation_chain.invoke({\"question\": query})\n",
    "print(result[\"answer\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "# set up a new conversation memory for the chat\n",
    "memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
    "\n",
    "# putting it together: set up the conversation chain with the  LLM, the vector store and memory\n",
    "conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Wrapping that in a function\n",
    "\n",
    "def chat(question, history):\n",
    "    result = conversation_chain.invoke({\"question\": question})\n",
    "    return result[\"answer\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Now we will bring this up in Gradio using the Chat interface -\n",
    "\n",
    "A quick and easy way to prototype a chat with an LLM"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And in Gradio:\n",
    "\n",
    "view = gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}