File size: 29,556 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "4a6ab9a2-28a2-445d-8512-a0dc8d1b54e9",
   "metadata": {},
   "source": [
    "# Code Generator\n",
    "\n",
    "The requirement: use an Open Source model to generate high performance C++ code from Python code\n",
    "\n",
    "To replicate this, you'll need to set up a HuggingFace endpoint as I do in the video. It's simple to do, and it's quite satisfying to see the results!\n",
    "\n",
    "It's also an important part of your learning; this is the first example of deploying an open source model to be behind an API. We'll return to this in Week 8, but this should plant a seed in your mind for what's involved in moving open source models into production."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "22e1567b-33fd-49e7-866e-4b635d15715a",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../important.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h1 style=\"color:#900;\">Important - Pause Endpoints when not in use</h1>\n",
    "            <span style=\"color:#900;\">\n",
    "            If you do decide to use HuggingFace endpoints for this project, you should stop or pause the endpoints when you are done to avoid accruing unnecessary running cost. The costs are very low as long as you only run the endpoint when you're using it. Navigate to the HuggingFace endpoint UI <a href=\"https://ui.endpoints.huggingface.co/\">here,</a> open your endpoint, and click Pause to put it on pause so you no longer pay for it.  \n",
    "Many thanks to student John L. for raising this.\n",
    "<br/><br/>\n",
    "In week 8 we will use Modal instead of HuggingFace endpoints; with Modal you only pay for the time that you use it and you should get free credits.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import io\n",
    "import sys\n",
    "import json\n",
    "import requests\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import google.generativeai\n",
    "import anthropic\n",
    "from IPython.display import Markdown, display, update_display\n",
    "import gradio as gr\n",
    "import subprocess"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4f672e1c-87e9-4865-b760-370fa605e614",
   "metadata": {},
   "outputs": [],
   "source": [
    "# environment\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da",
   "metadata": {},
   "outputs": [],
   "source": [
    "# initialize\n",
    "\n",
    "openai = OpenAI()\n",
    "claude = anthropic.Anthropic()\n",
    "OPENAI_MODEL = \"gpt-4o\"\n",
    "CLAUDE_MODEL = \"claude-3-5-sonnet-20240620\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6896636f-923e-4a2c-9d6c-fac07828a201",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_message = \"You are an assistant that reimplements Python code in high performance C++ for an M1 Mac. \"\n",
    "system_message += \"Respond only with C++ code; use comments sparingly and do not provide any explanation other than occasional comments. \"\n",
    "system_message += \"The C++ response needs to produce an identical output in the fastest possible time. Keep implementations of random number generators identical so that results match exactly.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8e7b3546-57aa-4c29-bc5d-f211970d04eb",
   "metadata": {},
   "outputs": [],
   "source": [
    "def user_prompt_for(python):\n",
    "    user_prompt = \"Rewrite this Python code in C++ with the fastest possible implementation that produces identical output in the least time. \"\n",
    "    user_prompt += \"Respond only with C++ code; do not explain your work other than a few comments. \"\n",
    "    user_prompt += \"Pay attention to number types to ensure no int overflows. Remember to #include all necessary C++ packages such as iomanip.\\n\\n\"\n",
    "    user_prompt += python\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c6190659-f54c-4951-bef4-4960f8e51cc4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def messages_for(python):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_message},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(python)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "71e1ba8c-5b05-4726-a9f3-8d8c6257350b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# write to a file called optimized.cpp\n",
    "\n",
    "def write_output(cpp):\n",
    "    code = cpp.replace(\"```cpp\",\"\").replace(\"```\",\"\")\n",
    "    with open(\"optimized.cpp\", \"w\") as f:\n",
    "        f.write(code)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e7d2fea8-74c6-4421-8f1e-0e76d5b201b9",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize_gpt(python):    \n",
    "    stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python), stream=True)\n",
    "    reply = \"\"\n",
    "    for chunk in stream:\n",
    "        fragment = chunk.choices[0].delta.content or \"\"\n",
    "        reply += fragment\n",
    "        print(fragment, end='', flush=True)\n",
    "    write_output(reply)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7cd84ad8-d55c-4fe0-9eeb-1895c95c4a9d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize_claude(python):\n",
    "    result = claude.messages.stream(\n",
    "        model=CLAUDE_MODEL,\n",
    "        max_tokens=2000,\n",
    "        system=system_message,\n",
    "        messages=[{\"role\": \"user\", \"content\": user_prompt_for(python)}],\n",
    "    )\n",
    "    reply = \"\"\n",
    "    with result as stream:\n",
    "        for text in stream.text_stream:\n",
    "            reply += text\n",
    "            print(text, end=\"\", flush=True)\n",
    "    write_output(reply)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a1cbb778-fa57-43de-b04b-ed523f396c38",
   "metadata": {},
   "outputs": [],
   "source": [
    "pi = \"\"\"\n",
    "import time\n",
    "\n",
    "def calculate(iterations, param1, param2):\n",
    "    result = 1.0\n",
    "    for i in range(1, iterations+1):\n",
    "        j = i * param1 - param2\n",
    "        result -= (1/j)\n",
    "        j = i * param1 + param2\n",
    "        result += (1/j)\n",
    "    return result\n",
    "\n",
    "start_time = time.time()\n",
    "result = calculate(100_000_000, 4, 1) * 4\n",
    "end_time = time.time()\n",
    "\n",
    "print(f\"Result: {result:.12f}\")\n",
    "print(f\"Execution Time: {(end_time - start_time):.6f} seconds\")\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7fe1cd4b-d2c5-4303-afed-2115a3fef200",
   "metadata": {},
   "outputs": [],
   "source": [
    "exec(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "105db6f9-343c-491d-8e44-3a5328b81719",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_gpt(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bf26ee95-0c77-491d-9a91-579a1e96a8a3",
   "metadata": {},
   "outputs": [],
   "source": [
    "exec(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4194e40c-04ab-4940-9d64-b4ad37c5bb40",
   "metadata": {},
   "outputs": [],
   "source": [
    "!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
    "!./optimized"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "983a11fe-e24d-4c65-8269-9802c5ef3ae6",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_claude(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d5a766f9-3d23-4bb4-a1d4-88ec44b61ddf",
   "metadata": {},
   "outputs": [],
   "source": [
    "!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
    "!./optimized"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c3b497b3-f569-420e-b92e-fb0f49957ce0",
   "metadata": {},
   "outputs": [],
   "source": [
    "python_hard = \"\"\"# Be careful to support large number sizes\n",
    "\n",
    "def lcg(seed, a=1664525, c=1013904223, m=2**32):\n",
    "    value = seed\n",
    "    while True:\n",
    "        value = (a * value + c) % m\n",
    "        yield value\n",
    "        \n",
    "def max_subarray_sum(n, seed, min_val, max_val):\n",
    "    lcg_gen = lcg(seed)\n",
    "    random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]\n",
    "    max_sum = float('-inf')\n",
    "    for i in range(n):\n",
    "        current_sum = 0\n",
    "        for j in range(i, n):\n",
    "            current_sum += random_numbers[j]\n",
    "            if current_sum > max_sum:\n",
    "                max_sum = current_sum\n",
    "    return max_sum\n",
    "\n",
    "def total_max_subarray_sum(n, initial_seed, min_val, max_val):\n",
    "    total_sum = 0\n",
    "    lcg_gen = lcg(initial_seed)\n",
    "    for _ in range(20):\n",
    "        seed = next(lcg_gen)\n",
    "        total_sum += max_subarray_sum(n, seed, min_val, max_val)\n",
    "    return total_sum\n",
    "\n",
    "# Parameters\n",
    "n = 10000         # Number of random numbers\n",
    "initial_seed = 42 # Initial seed for the LCG\n",
    "min_val = -10     # Minimum value of random numbers\n",
    "max_val = 10      # Maximum value of random numbers\n",
    "\n",
    "# Timing the function\n",
    "import time\n",
    "start_time = time.time()\n",
    "result = total_max_subarray_sum(n, initial_seed, min_val, max_val)\n",
    "end_time = time.time()\n",
    "\n",
    "print(\"Total Maximum Subarray Sum (20 runs):\", result)\n",
    "print(\"Execution Time: {:.6f} seconds\".format(end_time - start_time))\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dab5e4bc-276c-4555-bd4c-12c699d5e899",
   "metadata": {},
   "outputs": [],
   "source": [
    "exec(python_hard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8d24ed5-2c15-4f55-80e7-13a3952b3cb8",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_gpt(python_hard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0b3d073-88a2-40b2-831c-6f0c345c256f",
   "metadata": {},
   "outputs": [],
   "source": [
    "!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
    "!./optimized"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e9305446-1d0c-4b51-866a-b8c1e299bf5c",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_claude(python_hard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0c181036-8193-4fdd-aef3-fc513b218d43",
   "metadata": {},
   "outputs": [],
   "source": [
    "!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
    "!./optimized"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0be9f47d-5213-4700-b0e2-d444c7c738c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_gpt(python):    \n",
    "    stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python), stream=True)\n",
    "    reply = \"\"\n",
    "    for chunk in stream:\n",
    "        fragment = chunk.choices[0].delta.content or \"\"\n",
    "        reply += fragment\n",
    "        yield reply.replace('```cpp\\n','').replace('```','')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8669f56b-8314-4582-a167-78842caea131",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_claude(python):\n",
    "    result = claude.messages.stream(\n",
    "        model=CLAUDE_MODEL,\n",
    "        max_tokens=2000,\n",
    "        system=system_message,\n",
    "        messages=[{\"role\": \"user\", \"content\": user_prompt_for(python)}],\n",
    "    )\n",
    "    reply = \"\"\n",
    "    with result as stream:\n",
    "        for text in stream.text_stream:\n",
    "            reply += text\n",
    "            yield reply.replace('```cpp\\n','').replace('```','')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2f1ae8f5-16c8-40a0-aa18-63b617df078d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize(python, model):\n",
    "    if model==\"GPT\":\n",
    "        result = stream_gpt(python)\n",
    "    elif model==\"Claude\":\n",
    "        result = stream_claude(python)\n",
    "    else:\n",
    "        raise ValueError(\"Unknown model\")\n",
    "    for stream_so_far in result:\n",
    "        yield stream_so_far        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f1ddb38e-6b0a-4c37-baa4-ace0b7de887a",
   "metadata": {},
   "outputs": [],
   "source": [
    "with gr.Blocks() as ui:\n",
    "    with gr.Row():\n",
    "        python = gr.Textbox(label=\"Python code:\", lines=10, value=python_hard)\n",
    "        cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
    "    with gr.Row():\n",
    "        model = gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\", value=\"GPT\")\n",
    "        convert = gr.Button(\"Convert code\")\n",
    "\n",
    "    convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "19bf2bff-a822-4009-a539-f003b1651383",
   "metadata": {},
   "outputs": [],
   "source": [
    "def execute_python(code):\n",
    "    try:\n",
    "        output = io.StringIO()\n",
    "        sys.stdout = output\n",
    "        exec(code)\n",
    "    finally:\n",
    "        sys.stdout = sys.__stdout__\n",
    "    return output.getvalue()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "77f3ab5d-fcfb-4d3f-8728-9cacbf833ea6",
   "metadata": {},
   "outputs": [],
   "source": [
    "def execute_cpp(code):\n",
    "    write_output(code)\n",
    "    compiler_cmd = [\"clang++\", \"-O3\", \"-std=c++17\", \"-march=armv8.3-a\", \"-o\", \"optimized\", \"optimized.cpp\"]\n",
    "    try:\n",
    "        compile_result = subprocess.run(compiler_cmd, check=True, text=True, capture_output=True)\n",
    "        run_cmd = [\"./optimized\"]\n",
    "        run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)\n",
    "        return run_result.stdout\n",
    "    except subprocess.CalledProcessError as e:\n",
    "        return f\"An error occurred:\\n{e.stderr}\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9a2274f1-d03b-42c0-8dcc-4ce159b18442",
   "metadata": {},
   "outputs": [],
   "source": [
    "css = \"\"\"\n",
    ".python {background-color: #306998;}\n",
    ".cpp {background-color: #050;}\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f1303932-160c-424b-97a8-d28c816721b2",
   "metadata": {},
   "outputs": [],
   "source": [
    "with gr.Blocks(css=css) as ui:\n",
    "    gr.Markdown(\"## Convert code from Python to C++\")\n",
    "    with gr.Row():\n",
    "        python = gr.Textbox(label=\"Python code:\", value=python_hard, lines=10)\n",
    "        cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
    "    with gr.Row():\n",
    "        model = gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\", value=\"GPT\")\n",
    "    with gr.Row():\n",
    "        convert = gr.Button(\"Convert code\")\n",
    "    with gr.Row():\n",
    "        python_run = gr.Button(\"Run Python\")\n",
    "        cpp_run = gr.Button(\"Run C++\")\n",
    "    with gr.Row():\n",
    "        python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n",
    "        cpp_out = gr.TextArea(label=\"C++ result:\", elem_classes=[\"cpp\"])\n",
    "\n",
    "    convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
    "    python_run.click(execute_python, inputs=[python], outputs=[python_out])\n",
    "    cpp_run.click(execute_cpp, inputs=[cpp], outputs=[cpp_out])\n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bb8c5b4e-ec51-4f21-b3f8-6aa94fede86d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import login, InferenceClient\n",
    "from transformers import AutoTokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "13347633-4606-4e38-9927-80c39e65c1f1",
   "metadata": {},
   "outputs": [],
   "source": [
    "hf_token = os.environ['HF_TOKEN']\n",
    "login(hf_token, add_to_git_credential=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ef60a4df-6267-4ebd-8eed-dcb917af0a5e",
   "metadata": {},
   "outputs": [],
   "source": [
    "code_qwen = \"Qwen/CodeQwen1.5-7B-Chat\"\n",
    "code_gemma = \"google/codegemma-7b-it\"\n",
    "CODE_QWEN_URL = \"https://h1vdol7jxhje3mpn.us-east-1.aws.endpoints.huggingface.cloud\"\n",
    "CODE_GEMMA_URL = \"https://c5hggiyqachmgnqg.us-east-1.aws.endpoints.huggingface.cloud\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "695ce389-a903-4533-a2f1-cd9e2a6af8f2",
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(code_qwen)\n",
    "messages = messages_for(pi)\n",
    "text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d4548e96-0b32-4793-bdd6-1b072c2f26ab",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bb2a126b-09e7-4966-bc97-0ef5c2cc7896",
   "metadata": {},
   "outputs": [],
   "source": [
    "client = InferenceClient(CODE_QWEN_URL, token=hf_token)\n",
    "stream = client.text_generation(text, stream=True, details=True, max_new_tokens=3000)\n",
    "for r in stream:\n",
    "    print(r.token.text, end = \"\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "127a52e5-ad85-42b7-a0f5-9afda5efe090",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_code_qwen(python):\n",
    "    tokenizer = AutoTokenizer.from_pretrained(code_qwen)\n",
    "    messages = messages_for(python)\n",
    "    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
    "    client = InferenceClient(CODE_QWEN_URL, token=hf_token)\n",
    "    stream = client.text_generation(text, stream=True, details=True, max_new_tokens=3000)\n",
    "    result = \"\"\n",
    "    for r in stream:\n",
    "        result += r.token.text\n",
    "        yield result    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a82387d1-7651-4923-995b-fe18356fcaa6",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize(python, model):\n",
    "    if model==\"GPT\":\n",
    "        result = stream_gpt(python)\n",
    "    elif model==\"Claude\":\n",
    "        result = stream_claude(python)\n",
    "    elif model==\"CodeQwen\":\n",
    "        result = stream_code_qwen(python)\n",
    "    else:\n",
    "        raise ValueError(\"Unknown model\")\n",
    "    for stream_so_far in result:\n",
    "        yield stream_so_far    "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b0a6a97-5b8a-4a9b-8ee0-7561e0ced673",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../thankyou.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#090;\">Thank you to @CloudLlama for an amazing contribution</h2>\n",
    "            <span style=\"color:#090;\">\n",
    "                A student has contributed a chunk of code to improve this, in the next 2 cells. You can now select which Python porgram to run,\n",
    "                and a compiler is automatically selected that will work on PC, Windows and Mac. Massive thank you @CloudLlama!\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ba311ec-c16a-4fe0-946b-4b940704cf65",
   "metadata": {},
   "outputs": [],
   "source": [
    "def select_sample_program(sample_program):\n",
    "    if sample_program==\"pi\":\n",
    "        return pi\n",
    "    elif sample_program==\"python_hard\":\n",
    "        return python_hard\n",
    "    else:\n",
    "        return \"Type your Python program here\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e42286bc-085c-45dc-b101-234308e58269",
   "metadata": {},
   "outputs": [],
   "source": [
    "import platform\n",
    "\n",
    "VISUAL_STUDIO_2022_TOOLS = \"C:\\\\Program Files\\\\Microsoft Visual Studio\\\\2022\\\\Community\\\\Common7\\Tools\\\\VsDevCmd.bat\"\n",
    "VISUAL_STUDIO_2019_TOOLS = \"C:\\\\Program Files (x86)\\\\Microsoft Visual Studio\\\\2019\\\\BuildTools\\\\Common7\\\\Tools\\\\VsDevCmd.bat\"\n",
    "\n",
    "simple_cpp = \"\"\"\n",
    "#include <iostream>\n",
    "\n",
    "int main() {\n",
    "    std::cout << \"Hello\";\n",
    "    return 0;\n",
    "}\n",
    "\"\"\"\n",
    "\n",
    "def run_cmd(command_to_run):\n",
    "    try:\n",
    "        run_result = subprocess.run(command_to_run, check=True, text=True, capture_output=True)\n",
    "        return run_result.stdout if run_result.stdout else \"SUCCESS\"\n",
    "    except:\n",
    "        return \"\"\n",
    "\n",
    "def c_compiler_cmd(filename_base):\n",
    "    my_platform = platform.system()\n",
    "    my_compiler = []\n",
    "\n",
    "    try:\n",
    "        with open(\"simple.cpp\", \"w\") as f:\n",
    "            f.write(simple_cpp)\n",
    "            \n",
    "        if my_platform == \"Windows\":\n",
    "            if os.path.isfile(VISUAL_STUDIO_2022_TOOLS):\n",
    "                if os.path.isfile(\"./simple.exe\"):\n",
    "                    os.remove(\"./simple.exe\")\n",
    "                compile_cmd = [\"cmd\", \"/c\", VISUAL_STUDIO_2022_TOOLS, \"&\", \"cl\", \"simple.cpp\"]\n",
    "                if run_cmd(compile_cmd):\n",
    "                    if run_cmd([\"./simple.exe\"]) == \"Hello\":\n",
    "                        my_compiler = [\"Windows\", \"Visual Studio 2022\", [\"cmd\", \"/c\", VISUAL_STUDIO_2022_TOOLS, \"&\", \"cl\", f\"{filename_base}.cpp\"]]\n",
    "        \n",
    "            if not my_compiler:\n",
    "                if os.path.isfile(VISUAL_STUDIO_2019_TOOLS):\n",
    "                    if os.path.isfile(\"./simple.exe\"):\n",
    "                        os.remove(\"./simple.exe\")\n",
    "                    compile_cmd = [\"cmd\", \"/c\", VISUAL_STUDIO_2019_TOOLS, \"&\", \"cl\", \"simple.cpp\"]\n",
    "                    if run_cmd(compile_cmd):\n",
    "                        if run_cmd([\"./simple.exe\"]) == \"Hello\":\n",
    "                            my_compiler = [\"Windows\", \"Visual Studio 2019\", [\"cmd\", \"/c\", VISUAL_STUDIO_2019_TOOLS, \"&\", \"cl\", f\"{filename_base}.cpp\"]]\n",
    "    \n",
    "            if not my_compiler:\n",
    "                my_compiler=[my_platform, \"Unavailable\", []]\n",
    "                \n",
    "        elif my_platform == \"Linux\":\n",
    "            if os.path.isfile(\"./simple\"):\n",
    "                os.remove(\"./simple\")\n",
    "            compile_cmd = [\"g++\", \"simple.cpp\", \"-o\", \"simple\"]\n",
    "            if run_cmd(compile_cmd):\n",
    "                if run_cmd([\"./simple\"]) == \"Hello\":\n",
    "                    my_compiler = [\"Linux\", \"GCC (g++)\", [\"g++\", f\"{filename_base}.cpp\", \"-o\", f\"{filename_base}\" ]]\n",
    "    \n",
    "            if not my_compiler:\n",
    "                if os.path.isfile(\"./simple\"):\n",
    "                    os.remove(\"./simple\")\n",
    "                compile_cmd = [\"clang++\", \"simple.cpp\", \"-o\", \"simple\"]\n",
    "                if run_cmd(compile_cmd):\n",
    "                    if run_cmd([\"./simple\"]) == \"Hello\":\n",
    "                        my_compiler = [\"Linux\", \"Clang++\", [\"clang++\", f\"{filename_base}.cpp\", \"-o\", f\"{filename_base}\"]]\n",
    "        \n",
    "            if not my_compiler:\n",
    "                my_compiler=[my_platform, \"Unavailable\", []]\n",
    "    \n",
    "        elif my_platform == \"Darwin\":\n",
    "            if os.path.isfile(\"./simple\"):\n",
    "                os.remove(\"./simple\")\n",
    "            compile_cmd = [\"clang++\", \"-Ofast\", \"-std=c++17\", \"-march=armv8.5-a\", \"-mtune=apple-m1\", \"-mcpu=apple-m1\", \"-o\", \"simple\", \"simple.cpp\"]\n",
    "            if run_cmd(compile_cmd):\n",
    "                if run_cmd([\"./simple\"]) == \"Hello\":\n",
    "                    my_compiler = [\"Macintosh\", \"Clang++\", [\"clang++\", \"-Ofast\", \"-std=c++17\", \"-march=armv8.5-a\", \"-mtune=apple-m1\", \"-mcpu=apple-m1\", \"-o\", f\"{filename_base}\", f\"{filename_base}.cpp\"]]\n",
    "    \n",
    "            if not my_compiler:\n",
    "                my_compiler=[my_platform, \"Unavailable\", []]\n",
    "    except:\n",
    "        my_compiler=[my_platform, \"Unavailable\", []]\n",
    "        \n",
    "    if my_compiler:\n",
    "        return my_compiler\n",
    "    else:\n",
    "        return [\"Unknown\", \"Unavailable\", []]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f9ca2e6f-60c1-4e5f-b570-63c75b2d189b",
   "metadata": {},
   "outputs": [],
   "source": [
    "compiler_cmd = c_compiler_cmd(\"optimized\")\n",
    "\n",
    "with gr.Blocks(css=css) as ui:\n",
    "    gr.Markdown(\"## Convert code from Python to C++\")\n",
    "    with gr.Row():\n",
    "        python = gr.Textbox(label=\"Python code:\", value=python_hard, lines=10)\n",
    "        cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
    "    with gr.Row():\n",
    "        with gr.Column():\n",
    "            sample_program = gr.Radio([\"pi\", \"python_hard\"], label=\"Sample program\", value=\"python_hard\")\n",
    "            model = gr.Dropdown([\"GPT\", \"Claude\", \"CodeQwen\"], label=\"Select model\", value=\"GPT\")\n",
    "        with gr.Column():\n",
    "            architecture = gr.Radio([compiler_cmd[0]], label=\"Architecture\", interactive=False, value=compiler_cmd[0])\n",
    "            compiler = gr.Radio([compiler_cmd[1]], label=\"Compiler\", interactive=False, value=compiler_cmd[1])\n",
    "    with gr.Row():\n",
    "        convert = gr.Button(\"Convert code\")\n",
    "    with gr.Row():\n",
    "        python_run = gr.Button(\"Run Python\")\n",
    "        if not compiler_cmd[1] == \"Unavailable\":\n",
    "            cpp_run = gr.Button(\"Run C++\")\n",
    "        else:\n",
    "            cpp_run = gr.Button(\"No compiler to run C++\", interactive=False)\n",
    "    with gr.Row():\n",
    "        python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n",
    "        cpp_out = gr.TextArea(label=\"C++ result:\", elem_classes=[\"cpp\"])\n",
    "\n",
    "    sample_program.change(select_sample_program, inputs=[sample_program], outputs=[python])\n",
    "    convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
    "    python_run.click(execute_python, inputs=[python], outputs=[python_out])\n",
    "    cpp_run.click(execute_cpp, inputs=[cpp], outputs=[cpp_out])\n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9d0ad093-425b-488e-8c3f-67f729dd9c06",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}