File size: 20,456 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "4a6ab9a2-28a2-445d-8512-a0dc8d1b54e9",
   "metadata": {},
   "source": [
    "# Code Generator\n",
    "\n",
    "The requirement: use a Frontier model to generate high performance C++ code from Python code\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d5ccb926-7b49-44a4-99ab-8ef20b5778c0",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../resources.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#f71;\">Reminder: fetch latest code</h2>\n",
    "            <span style=\"color:#f71;\">I'm continually improving these labs, adding more examples and exercises.\n",
    "            At the start of each week, it's worth checking you have the latest code.<br/>\n",
    "            First do a <a href=\"https://chatgpt.com/share/6734e705-3270-8012-a074-421661af6ba9\">git pull and merge your changes as needed</a>. Any problems? Try asking ChatGPT to clarify how to merge - or contact me!<br/><br/>\n",
    "            After you've pulled the code, from the llm_engineering directory, in an Anaconda prompt (PC) or Terminal (Mac), run:<br/>\n",
    "            <code>conda env update --f environment.yml --prune</code><br/>\n",
    "            Or if you used virtualenv rather than Anaconda, then run this from your activated environment in a Powershell (PC) or Terminal (Mac):<br/>\n",
    "            <code>pip install -r requirements.txt</code>\n",
    "            <br/>Then restart the kernel (Kernel menu >> Restart Kernel and Clear Outputs Of All Cells) to pick up the changes.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d90e04a2-5b8a-4fd5-9db8-27c02f033313",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../important.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h1 style=\"color:#900;\">Important Note</h1>\n",
    "            <span style=\"color:#900;\">\n",
    "            In this lab, I use GPT-4o and Claude-3.5-Sonnet, which are the slightly higher priced models. The costs are still low, but if you'd prefer to keep costs ultra low, please make the suggested switches to the models (3 cells down from here).\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import io\n",
    "import sys\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import google.generativeai\n",
    "import anthropic\n",
    "from IPython.display import Markdown, display, update_display\n",
    "import gradio as gr\n",
    "import subprocess"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4f672e1c-87e9-4865-b760-370fa605e614",
   "metadata": {},
   "outputs": [],
   "source": [
    "# environment\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da",
   "metadata": {},
   "outputs": [],
   "source": [
    "# initialize\n",
    "# NOTE - option to use ultra-low cost models by uncommenting last 2 lines\n",
    "\n",
    "openai = OpenAI()\n",
    "claude = anthropic.Anthropic()\n",
    "OPENAI_MODEL = \"gpt-4o\"\n",
    "CLAUDE_MODEL = \"claude-3-5-sonnet-20240620\"\n",
    "\n",
    "# Want to keep costs ultra-low? Uncomment these lines:\n",
    "# OPENAI_MODEL = \"gpt-4o-mini\"\n",
    "# CLAUDE_MODEL = \"claude-3-haiku-20240307\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6896636f-923e-4a2c-9d6c-fac07828a201",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_message = \"You are an assistant that reimplements Python code in high performance C++ for an M1 Mac. \"\n",
    "system_message += \"Respond only with C++ code; use comments sparingly and do not provide any explanation other than occasional comments. \"\n",
    "system_message += \"The C++ response needs to produce an identical output in the fastest possible time.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8e7b3546-57aa-4c29-bc5d-f211970d04eb",
   "metadata": {},
   "outputs": [],
   "source": [
    "def user_prompt_for(python):\n",
    "    user_prompt = \"Rewrite this Python code in C++ with the fastest possible implementation that produces identical output in the least time. \"\n",
    "    user_prompt += \"Respond only with C++ code; do not explain your work other than a few comments. \"\n",
    "    user_prompt += \"Pay attention to number types to ensure no int overflows. Remember to #include all necessary C++ packages such as iomanip.\\n\\n\"\n",
    "    user_prompt += python\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c6190659-f54c-4951-bef4-4960f8e51cc4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def messages_for(python):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_message},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(python)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "71e1ba8c-5b05-4726-a9f3-8d8c6257350b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# write to a file called optimized.cpp\n",
    "\n",
    "def write_output(cpp):\n",
    "    code = cpp.replace(\"```cpp\",\"\").replace(\"```\",\"\")\n",
    "    with open(\"optimized.cpp\", \"w\") as f:\n",
    "        f.write(code)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e7d2fea8-74c6-4421-8f1e-0e76d5b201b9",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize_gpt(python):    \n",
    "    stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python), stream=True)\n",
    "    reply = \"\"\n",
    "    for chunk in stream:\n",
    "        fragment = chunk.choices[0].delta.content or \"\"\n",
    "        reply += fragment\n",
    "        print(fragment, end='', flush=True)\n",
    "    write_output(reply)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7cd84ad8-d55c-4fe0-9eeb-1895c95c4a9d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize_claude(python):\n",
    "    result = claude.messages.stream(\n",
    "        model=CLAUDE_MODEL,\n",
    "        max_tokens=2000,\n",
    "        system=system_message,\n",
    "        messages=[{\"role\": \"user\", \"content\": user_prompt_for(python)}],\n",
    "    )\n",
    "    reply = \"\"\n",
    "    with result as stream:\n",
    "        for text in stream.text_stream:\n",
    "            reply += text\n",
    "            print(text, end=\"\", flush=True)\n",
    "    write_output(reply)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a1cbb778-fa57-43de-b04b-ed523f396c38",
   "metadata": {},
   "outputs": [],
   "source": [
    "pi = \"\"\"\n",
    "import time\n",
    "\n",
    "def calculate(iterations, param1, param2):\n",
    "    result = 1.0\n",
    "    for i in range(1, iterations+1):\n",
    "        j = i * param1 - param2\n",
    "        result -= (1/j)\n",
    "        j = i * param1 + param2\n",
    "        result += (1/j)\n",
    "    return result\n",
    "\n",
    "start_time = time.time()\n",
    "result = calculate(100_000_000, 4, 1) * 4\n",
    "end_time = time.time()\n",
    "\n",
    "print(f\"Result: {result:.12f}\")\n",
    "print(f\"Execution Time: {(end_time - start_time):.6f} seconds\")\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7fe1cd4b-d2c5-4303-afed-2115a3fef200",
   "metadata": {},
   "outputs": [],
   "source": [
    "exec(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "105db6f9-343c-491d-8e44-3a5328b81719",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_gpt(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bf26ee95-0c77-491d-9a91-579a1e96a8a3",
   "metadata": {},
   "outputs": [],
   "source": [
    "exec(pi)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bf8f8018-f64d-425c-a0e1-d7862aa9592d",
   "metadata": {},
   "source": [
    "# Compiling C++ and executing\n",
    "\n",
    "This next cell contains the command to compile a C++ file on my M1 Mac.  \n",
    "It compiles the file `optimized.cpp` into an executable called `optimized`  \n",
    "Then it runs the program called `optimized`\n",
    "\n",
    "In the next lab (day4), a student has contributed a full solution that compiles to efficient code on Mac, PC and Linux!\n",
    "\n",
    "You can wait for this, or you can google (or ask ChatGPT!) for how to do this on your platform, then replace the lines below.\n",
    "If you're not comfortable with this step, you can skip it for sure - I'll show you exactly how it performs on my Mac.\n",
    "\n",
    "\n",
    "OR alternatively: student Sandeep K.G. points out that you can run Python and C++ code online to test it out that way. Thank you Sandeep!  \n",
    "> Not an exact comparison but you can still get the idea of performance difference.\n",
    "> For example here: https://www.programiz.com/cpp-programming/online-compiler/"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4194e40c-04ab-4940-9d64-b4ad37c5bb40",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Compile C++ and run the executable\n",
    "\n",
    "!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
    "!./optimized"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "983a11fe-e24d-4c65-8269-9802c5ef3ae6",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_claude(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d5a766f9-3d23-4bb4-a1d4-88ec44b61ddf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Repeat for Claude - again, use the right approach for your platform\n",
    "\n",
    "!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
    "!./optimized"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c3b497b3-f569-420e-b92e-fb0f49957ce0",
   "metadata": {},
   "outputs": [],
   "source": [
    "python_hard = \"\"\"# Be careful to support large number sizes\n",
    "\n",
    "def lcg(seed, a=1664525, c=1013904223, m=2**32):\n",
    "    value = seed\n",
    "    while True:\n",
    "        value = (a * value + c) % m\n",
    "        yield value\n",
    "        \n",
    "def max_subarray_sum(n, seed, min_val, max_val):\n",
    "    lcg_gen = lcg(seed)\n",
    "    random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]\n",
    "    max_sum = float('-inf')\n",
    "    for i in range(n):\n",
    "        current_sum = 0\n",
    "        for j in range(i, n):\n",
    "            current_sum += random_numbers[j]\n",
    "            if current_sum > max_sum:\n",
    "                max_sum = current_sum\n",
    "    return max_sum\n",
    "\n",
    "def total_max_subarray_sum(n, initial_seed, min_val, max_val):\n",
    "    total_sum = 0\n",
    "    lcg_gen = lcg(initial_seed)\n",
    "    for _ in range(20):\n",
    "        seed = next(lcg_gen)\n",
    "        total_sum += max_subarray_sum(n, seed, min_val, max_val)\n",
    "    return total_sum\n",
    "\n",
    "# Parameters\n",
    "n = 10000         # Number of random numbers\n",
    "initial_seed = 42 # Initial seed for the LCG\n",
    "min_val = -10     # Minimum value of random numbers\n",
    "max_val = 10      # Maximum value of random numbers\n",
    "\n",
    "# Timing the function\n",
    "import time\n",
    "start_time = time.time()\n",
    "result = total_max_subarray_sum(n, initial_seed, min_val, max_val)\n",
    "end_time = time.time()\n",
    "\n",
    "print(\"Total Maximum Subarray Sum (20 runs):\", result)\n",
    "print(\"Execution Time: {:.6f} seconds\".format(end_time - start_time))\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dab5e4bc-276c-4555-bd4c-12c699d5e899",
   "metadata": {},
   "outputs": [],
   "source": [
    "exec(python_hard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8d24ed5-2c15-4f55-80e7-13a3952b3cb8",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_gpt(python_hard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0b3d073-88a2-40b2-831c-6f0c345c256f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Replace this with the right C++ compile + execute command for your platform\n",
    "\n",
    "!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
    "!./optimized"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e9305446-1d0c-4b51-866a-b8c1e299bf5c",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_claude(python_hard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0c181036-8193-4fdd-aef3-fc513b218d43",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Replace this with the right C++ compile + execute command for your platform\n",
    "\n",
    "!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
    "!./optimized"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0be9f47d-5213-4700-b0e2-d444c7c738c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_gpt(python):    \n",
    "    stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python), stream=True)\n",
    "    reply = \"\"\n",
    "    for chunk in stream:\n",
    "        fragment = chunk.choices[0].delta.content or \"\"\n",
    "        reply += fragment\n",
    "        yield reply.replace('```cpp\\n','').replace('```','')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8669f56b-8314-4582-a167-78842caea131",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_claude(python):\n",
    "    result = claude.messages.stream(\n",
    "        model=CLAUDE_MODEL,\n",
    "        max_tokens=2000,\n",
    "        system=system_message,\n",
    "        messages=[{\"role\": \"user\", \"content\": user_prompt_for(python)}],\n",
    "    )\n",
    "    reply = \"\"\n",
    "    with result as stream:\n",
    "        for text in stream.text_stream:\n",
    "            reply += text\n",
    "            yield reply.replace('```cpp\\n','').replace('```','')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2f1ae8f5-16c8-40a0-aa18-63b617df078d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize(python, model):\n",
    "    if model==\"GPT\":\n",
    "        result = stream_gpt(python)\n",
    "    elif model==\"Claude\":\n",
    "        result = stream_claude(python)\n",
    "    else:\n",
    "        raise ValueError(\"Unknown model\")\n",
    "    for stream_so_far in result:\n",
    "        yield stream_so_far        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f1ddb38e-6b0a-4c37-baa4-ace0b7de887a",
   "metadata": {},
   "outputs": [],
   "source": [
    "with gr.Blocks() as ui:\n",
    "    with gr.Row():\n",
    "        python = gr.Textbox(label=\"Python code:\", lines=10, value=python_hard)\n",
    "        cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
    "    with gr.Row():\n",
    "        model = gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\", value=\"GPT\")\n",
    "        convert = gr.Button(\"Convert code\")\n",
    "\n",
    "    convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "19bf2bff-a822-4009-a539-f003b1651383",
   "metadata": {},
   "outputs": [],
   "source": [
    "def execute_python(code):\n",
    "    try:\n",
    "        output = io.StringIO()\n",
    "        sys.stdout = output\n",
    "        exec(code)\n",
    "    finally:\n",
    "        sys.stdout = sys.__stdout__\n",
    "    return output.getvalue()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "77f3ab5d-fcfb-4d3f-8728-9cacbf833ea6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# You'll need to change the code in the try block to compile the C++ code for your platform\n",
    "# I pasted this into Claude's chat UI with a request for it to give me a version for an Intel PC,\n",
    "# and it responded with something that looks perfect - you can try a similar approach for your platform.\n",
    "\n",
    "# M1 Mac version to compile and execute optimized C++ code:\n",
    "\n",
    "def execute_cpp(code):\n",
    "        write_output(code)\n",
    "        try:\n",
    "            compile_cmd = [\"clang++\", \"-Ofast\", \"-std=c++17\", \"-march=armv8.5-a\", \"-mtune=apple-m1\", \"-mcpu=apple-m1\", \"-o\", \"optimized\", \"optimized.cpp\"]\n",
    "            compile_result = subprocess.run(compile_cmd, check=True, text=True, capture_output=True)\n",
    "            run_cmd = [\"./optimized\"]\n",
    "            run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)\n",
    "            return run_result.stdout\n",
    "        except subprocess.CalledProcessError as e:\n",
    "            return f\"An error occurred:\\n{e.stderr}\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9a2274f1-d03b-42c0-8dcc-4ce159b18442",
   "metadata": {},
   "outputs": [],
   "source": [
    "css = \"\"\"\n",
    ".python {background-color: #306998;}\n",
    ".cpp {background-color: #050;}\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f1303932-160c-424b-97a8-d28c816721b2",
   "metadata": {},
   "outputs": [],
   "source": [
    "with gr.Blocks(css=css) as ui:\n",
    "    gr.Markdown(\"## Convert code from Python to C++\")\n",
    "    with gr.Row():\n",
    "        python = gr.Textbox(label=\"Python code:\", value=python_hard, lines=10)\n",
    "        cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
    "    with gr.Row():\n",
    "        model = gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\", value=\"GPT\")\n",
    "    with gr.Row():\n",
    "        convert = gr.Button(\"Convert code\")\n",
    "    with gr.Row():\n",
    "        python_run = gr.Button(\"Run Python\")\n",
    "        cpp_run = gr.Button(\"Run C++\")\n",
    "    with gr.Row():\n",
    "        python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n",
    "        cpp_out = gr.TextArea(label=\"C++ result:\", elem_classes=[\"cpp\"])\n",
    "\n",
    "    convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
    "    python_run.click(execute_python, inputs=[python], outputs=[python_out])\n",
    "    cpp_run.click(execute_cpp, inputs=[cpp], outputs=[cpp_out])\n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}