Spaces:
Sleeping
Sleeping
File size: 13,016 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import os
import io
import sys
import re
import subprocess
from dotenv import load_dotenv
from openai import OpenAI
from anthropic import Anthropic
import gradio as gr
# Load environment variables and initialize APIs
load_dotenv(override=True)
openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
anthropic = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
MACHINE_SPEC = "MacbookPro, Apple M1 Chip"
# Define global variables for HF integration
# For HF chat-based CodeQwen model
code_qwen = "Qwen/CodeQwen1.5-7B-Chat"
CODE_QWEN_URL = ""
def clean_code(code, target_language):
"""
Remove markdown code fences and stray language indicators.
Also apply language-specific replacements.
"""
raw_lines = code.splitlines()
cleaned_lines = []
for line in raw_lines:
if "```" in line:
continue
if line.strip().lower() in ["c", "cpp", "c++", "rust"]:
continue
cleaned_lines.append(line)
cleaned = "\n".join(cleaned_lines)
if target_language == "C":
cleaned = cleaned.replace("1U << 32", "(1ULL << 32)")
if target_language == "Rust":
cleaned = process_rust_code(cleaned)
return cleaned
# Conversion prompt functions (target language-aware)
def user_prompt_for(python_code, target_language):
return (
f"Rewrite this Python code in {target_language} with the fastest possible implementation that produces identical output. "
f"Respond only with {target_language} code; do not explain your work. "
"Pay attention to number types to ensure no int overflows. Remember to #include all necessary C++ packages such as iomanip.\n\n"
+ python_code
)
def messages_for(python_code, target_language):
system_message = (
f"You are an assistant that reimplements Python code in high performance {target_language} for an {MACHINE_SPEC}. "
f"Respond only with {target_language} code; use comments sparingly. "
f"The {target_language} response needs to produce an identical output in the fastest possible time."
)
return [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt_for(python_code, target_language)},
]
def write_output(code, target_language):
"""Write the converted code to a file based on target language."""
tag = target_language.lower() if target_language is not None else ""
if target_language == "C++":
filename = "optimized.cpp"
elif target_language == "C":
filename = "optimized.c"
elif target_language == "Rust":
filename = "optimized.rs"
else:
filename = "optimized.txt"
cleaned = code.replace(f"```{tag}\n", "").replace("```", "")
lines = cleaned.splitlines()
if lines and lines[0].strip().lower() in ["cpp", "c++", "c", "rust"]:
lines = lines[1:]
cleaned = "\n".join(lines)
cleaned = clean_code(cleaned, target_language)
with open(filename, "w") as f:
f.write(cleaned)
return filename
# GPT integration for conversion
def stream_gpt(python_code, target_language, model_version):
stream = openai.chat.completions.create(
model=model_version, # Use selected GPT model version
messages=messages_for(python_code, target_language),
stream=True,
)
reply = ""
for chunk in stream:
if not hasattr(chunk, "choices") or not chunk.choices:
continue
fragment = chunk.choices[0].delta.content or ""
reply += fragment
yield reply.replace(f"```{target_language}\n", "").replace("```", "")
# Claude integration for conversion
def stream_claude(python_code, target_language, model_version):
prompt = user_prompt_for(python_code, target_language)
response = anthropic.completions.create(
prompt=prompt,
model=model_version,
stream=True,
)
reply = ""
for chunk in response:
fragment = chunk.get("completion", "")
reply += fragment
yield reply.replace(f"```{target_language}\n", "").replace("```", "")
# Hugging Face integration functions
def stream_code_qwen(python_code, target_language, model_version):
"""
HF chat-based model using CodeQwen.
"""
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(code_qwen)
messages = messages_for(python_code, target_language)
# Convert messages to chat format as expected by Qwen.
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
from huggingface_hub import InferenceClient
client = InferenceClient(CODE_QWEN_URL, token=os.getenv("HF_TOKEN"))
stream = client.text_generation(text, stream=True, details=True, max_new_tokens=3000)
result = ""
for r in stream:
result += r.token.text
yield result.replace(f"```{target_language}\n", "").replace("```", "")
def stream_huggingface(python_code, target_language, model_version):
"""
HF single-prompt model integration.
"""
prompt = user_prompt_for(python_code, target_language)
from huggingface_hub import InferenceClient
client = InferenceClient(model_name=model_version, token=os.getenv("HF_TOKEN"))
stream = client.text_generation(prompt, stream=True, details=True, max_new_tokens=3000)
reply = ""
for chunk in stream:
reply += chunk.token.text
yield reply.replace(f"```{target_language}\n", "").replace("```", "")
def optimize(python_code, combined_model, target_language):
"""
combined_model is a string like "GPT: gpt-4o", "CLAUDE: claude-3-5-sonnet-20240620" or "HF: model_name"
"""
provider, model_version = [x.strip() for x in combined_model.split(":")]
if provider == "GPT":
for partial in stream_gpt(python_code, target_language, model_version):
yield partial
elif provider == "CLAUDE":
for partial in stream_claude(python_code, target_language, model_version):
yield partial
elif provider == "HF":
if "CodeQwen" in model_version:
for partial in stream_code_qwen(python_code, target_language, model_version):
yield partial
else:
for partial in stream_huggingface(python_code, target_language, model_version):
yield partial
else:
raise ValueError("Unknown model provider")
def execute_python(code):
"""Execute Python code and return its output."""
env = {} # Dedicated global namespace
try:
output = io.StringIO()
sys.stdout = output
exec(code, env)
finally:
sys.stdout = sys.__stdout__
return output.getvalue()
def execute_cpp(code):
write_output(code, target_language="C++")
try:
compile_cmd = [
"clang++", "-Ofast", "-std=c++17", "-march=armv8.5-a",
"-mtune=apple-m1", "-mcpu=apple-m1", "-o", "optimized", "optimized.cpp"
]
subprocess.run(compile_cmd, check=True, text=True, capture_output=True)
run_cmd = ["./optimized"]
run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)
return run_result.stdout
except subprocess.CalledProcessError as e:
return f"Error:\n{e.stderr}"
def execute_c(code):
cleaned_code = clean_code(code, "C")
with open("optimized.c", "w") as f:
f.write(cleaned_code)
try:
compile_cmd = ["clang", "-O2", "-std=c11", "-o", "optimized_c", "optimized.c"]
subprocess.run(compile_cmd, check=True, text=True, capture_output=True)
run_cmd = ["./optimized_c"]
run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)
return run_result.stdout
except subprocess.CalledProcessError as e:
return f"Error:\n{e.stderr}"
def process_rust_code(code):
code = code.replace("{:.6f}", "{:.6}")
code = re.sub(
r'(println!$begin:math:text$"Execution Time: \\{\\:\\.6\\} seconds", duration\\.as_secs_f64)(\\s*)$',
r'\\1())',
code,
flags=re.MULTILINE,
)
code = code.replace("max_val - min_val as u32 + 1", "((max_val - min_val + 1) as u32)")
code = code.replace("1 << 32", "1u64 << 32")
code = re.sub(r'($end:math:text$\s*as i64)\)', r'\1', code)
return code
def execute_rust(code):
code = code.replace("```rust\n", "").replace("```", "")
lines = code.split('\n', 1)
if lines and lines[0].strip().lower() == "rust":
code = lines[1] if len(lines) > 1 else ""
code = process_rust_code(code)
with open("optimized.rs", "w") as f:
f.write(code)
try:
compile_cmd = ["rustc", "optimized.rs", "-O", "-o", "optimized_rust"]
subprocess.run(compile_cmd, check=True, text=True, capture_output=True)
run_cmd = ["./optimized_rust"]
run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)
return run_result.stdout
except subprocess.CalledProcessError as e:
return f"Error:\n{e.stderr}"
def execute_target_code(code, target_language):
"""Select the appropriate execution function based on target language."""
if target_language == "C++":
return execute_cpp(code)
elif target_language == "C":
return execute_c(code)
elif target_language == "Rust":
return execute_rust(code)
else:
return "Unsupported language"
# Gradio UI setup
css = """
.python {background-color: #306998;}
.code {background-color: #050;}
"""
def launch_ui():
with gr.Blocks(css=css) as ui:
gr.Markdown("## Convert Python Code to C/C++/Rust")
with gr.Row():
python_box = gr.Textbox(label="Python code:", value=PYTHON_HARD, lines=10)
converted_box = gr.Textbox(label="Converted Code:", lines=10)
with gr.Row():
model_dropdown = gr.Dropdown(
["GPT: gpt-4o", "GPT: gpt-4o-mini", "CLAUDE: claude-3-5-sonnet-20240620", "CLAUDE: claude-3-haiku-20240307", "HF: CodeQwen1.5-7B-Chat", "HF: bigcode/starcoder"],
label="Select Model",
value="GPT: gpt-4o"
)
target_lang_dropdown = gr.Dropdown(
["C++", "C", "Rust"],
label="Select target language",
value="C++"
)
with gr.Row():
convert_btn = gr.Button("Convert code")
with gr.Row():
python_run_btn = gr.Button("Run Python")
run_converted_btn = gr.Button("Run Converted Code")
with gr.Row():
python_out = gr.TextArea(label="Python result:", elem_classes=["python"])
converted_out = gr.TextArea(label="Converted Code result:", elem_classes=["code"])
convert_btn.click(
optimize,
inputs=[python_box, model_dropdown, target_lang_dropdown],
outputs=[converted_box],
)
python_run_btn.click(execute_python, inputs=[python_box], outputs=[python_out])
run_converted_btn.click(
execute_target_code,
inputs=[converted_box, target_lang_dropdown],
outputs=[converted_out],
)
ui.launch()
# Example Python code blocks
PYTHON_HARD = """
# Support large number sizes
def lcg(seed, a=1664525, c=1013904223, m=2**32):
value = seed
while True:
value = (a * value + c) % m
yield value
def max_subarray_sum(n, seed, min_val, max_val):
lcg_gen = lcg(seed)
random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]
max_sum = float('-inf')
for i in range(n):
current_sum = 0
for j in range(i, n):
current_sum += random_numbers[j]
if current_sum > max_sum:
max_sum = current_sum
return max_sum
def total_max_subarray_sum(n, initial_seed, min_val, max_val):
total_sum = 0
lcg_gen = lcg(initial_seed)
for _ in range(20):
seed = next(lcg_gen)
total_sum += max_subarray_sum(n, seed, min_val, max_val)
return total_sum
n = 10000
initial_seed = 42
min_val = -10
max_val = 10
import time
start_time = time.time()
result = total_max_subarray_sum(n, initial_seed, min_val, max_val)
end_time = time.time()
print("Total Maximum Subarray Sum (20 runs):", result)
print("Execution Time: {:.6f} seconds".format(end_time - start_time))
"""
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description="Single script with multiple executable sections and target language support"
)
parser.add_argument(
"--mode",
choices=["direct", "ui"],
default="ui",
help="Run direct conversion or launch Gradio UI",
)
args = parser.parse_args()
if args.mode == "direct":
print("\nExecuting Python code (PYTHON_HARD)...")
exec(PYTHON_HARD)
for partial in optimize(PYTHON_HARD, "GPT: gpt-4o", "C++"):
print(partial, end="")
elif args.mode == "ui":
launch_ui() |