File size: 13,016 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import io
import sys
import re
import subprocess
from dotenv import load_dotenv
from openai import OpenAI
from anthropic import Anthropic
import gradio as gr

# Load environment variables and initialize APIs
load_dotenv(override=True)
openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
anthropic = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
MACHINE_SPEC = "MacbookPro, Apple M1 Chip"

# Define global variables for HF integration
# For HF chat-based CodeQwen model
code_qwen = "Qwen/CodeQwen1.5-7B-Chat"
CODE_QWEN_URL = ""


def clean_code(code, target_language):
    """
    Remove markdown code fences and stray language indicators.
    Also apply language-specific replacements.
    """
    raw_lines = code.splitlines()
    cleaned_lines = []
    for line in raw_lines:
        if "```" in line:
            continue
        if line.strip().lower() in ["c", "cpp", "c++", "rust"]:
            continue
        cleaned_lines.append(line)
    cleaned = "\n".join(cleaned_lines)
    if target_language == "C":
        cleaned = cleaned.replace("1U << 32", "(1ULL << 32)")
    if target_language == "Rust":
        cleaned = process_rust_code(cleaned)
    return cleaned

# Conversion prompt functions (target language-aware)
def user_prompt_for(python_code, target_language):
    return (
        f"Rewrite this Python code in {target_language} with the fastest possible implementation that produces identical output. "
        f"Respond only with {target_language} code; do not explain your work. "
        "Pay attention to number types to ensure no int overflows. Remember to #include all necessary C++ packages such as iomanip.\n\n"
        + python_code
    )

def messages_for(python_code, target_language):
    system_message = (
        f"You are an assistant that reimplements Python code in high performance {target_language} for an {MACHINE_SPEC}. "
        f"Respond only with {target_language} code; use comments sparingly. "
        f"The {target_language} response needs to produce an identical output in the fastest possible time."
    )
    return [
        {"role": "system", "content": system_message},
        {"role": "user", "content": user_prompt_for(python_code, target_language)},
    ]

def write_output(code, target_language):
    """Write the converted code to a file based on target language."""
    tag = target_language.lower() if target_language is not None else ""
    if target_language == "C++":
        filename = "optimized.cpp"
    elif target_language == "C":
        filename = "optimized.c"
    elif target_language == "Rust":
        filename = "optimized.rs"
    else:
        filename = "optimized.txt"
    cleaned = code.replace(f"```{tag}\n", "").replace("```", "")
    lines = cleaned.splitlines()
    if lines and lines[0].strip().lower() in ["cpp", "c++", "c", "rust"]:
        lines = lines[1:]
    cleaned = "\n".join(lines)
    cleaned = clean_code(cleaned, target_language)
    with open(filename, "w") as f:
        f.write(cleaned)
    return filename

# GPT integration for conversion
def stream_gpt(python_code, target_language, model_version):
    stream = openai.chat.completions.create(
        model=model_version,  # Use selected GPT model version
        messages=messages_for(python_code, target_language),
        stream=True,
    )
    reply = ""
    for chunk in stream:
        if not hasattr(chunk, "choices") or not chunk.choices:
            continue
        fragment = chunk.choices[0].delta.content or ""
        reply += fragment
        yield reply.replace(f"```{target_language}\n", "").replace("```", "")

# Claude integration for conversion
def stream_claude(python_code, target_language, model_version):
    prompt = user_prompt_for(python_code, target_language)
    response = anthropic.completions.create(
        prompt=prompt,
        model=model_version,
        stream=True,
    )
    reply = ""
    for chunk in response:
        fragment = chunk.get("completion", "")
        reply += fragment
        yield reply.replace(f"```{target_language}\n", "").replace("```", "")

# Hugging Face integration functions
def stream_code_qwen(python_code, target_language, model_version):
    """
    HF chat-based model using CodeQwen.
    """
    from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained(code_qwen)
    messages = messages_for(python_code, target_language)
    # Convert messages to chat format as expected by Qwen.
    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    from huggingface_hub import InferenceClient
    client = InferenceClient(CODE_QWEN_URL, token=os.getenv("HF_TOKEN"))
    stream = client.text_generation(text, stream=True, details=True, max_new_tokens=3000)
    result = ""
    for r in stream:
        result += r.token.text
        yield result.replace(f"```{target_language}\n", "").replace("```", "")

def stream_huggingface(python_code, target_language, model_version):
    """
    HF single-prompt model integration.
    """
    prompt = user_prompt_for(python_code, target_language)
    from huggingface_hub import InferenceClient
    client = InferenceClient(model_name=model_version, token=os.getenv("HF_TOKEN"))
    stream = client.text_generation(prompt, stream=True, details=True, max_new_tokens=3000)
    reply = ""
    for chunk in stream:
        reply += chunk.token.text
        yield reply.replace(f"```{target_language}\n", "").replace("```", "")


def optimize(python_code, combined_model, target_language):
    """
    combined_model is a string like "GPT: gpt-4o", "CLAUDE: claude-3-5-sonnet-20240620" or "HF: model_name"
    """
    provider, model_version = [x.strip() for x in combined_model.split(":")]
    if provider == "GPT":
        for partial in stream_gpt(python_code, target_language, model_version):
            yield partial
    elif provider == "CLAUDE":
        for partial in stream_claude(python_code, target_language, model_version):
            yield partial
    elif provider == "HF":
        if "CodeQwen" in model_version:
            for partial in stream_code_qwen(python_code, target_language, model_version):
                yield partial
        else:
            for partial in stream_huggingface(python_code, target_language, model_version):
                yield partial
    else:
        raise ValueError("Unknown model provider")

def execute_python(code):
    """Execute Python code and return its output."""
    env = {}  # Dedicated global namespace
    try:
        output = io.StringIO()
        sys.stdout = output
        exec(code, env)
    finally:
        sys.stdout = sys.__stdout__
    return output.getvalue()

def execute_cpp(code):
    write_output(code, target_language="C++")
    try:
        compile_cmd = [
            "clang++", "-Ofast", "-std=c++17", "-march=armv8.5-a",
            "-mtune=apple-m1", "-mcpu=apple-m1", "-o", "optimized", "optimized.cpp"
        ]
        subprocess.run(compile_cmd, check=True, text=True, capture_output=True)
        run_cmd = ["./optimized"]
        run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)
        return run_result.stdout
    except subprocess.CalledProcessError as e:
        return f"Error:\n{e.stderr}"

def execute_c(code):
    cleaned_code = clean_code(code, "C")
    with open("optimized.c", "w") as f:
        f.write(cleaned_code)
    try:
        compile_cmd = ["clang", "-O2", "-std=c11", "-o", "optimized_c", "optimized.c"]
        subprocess.run(compile_cmd, check=True, text=True, capture_output=True)
        run_cmd = ["./optimized_c"]
        run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)
        return run_result.stdout
    except subprocess.CalledProcessError as e:
        return f"Error:\n{e.stderr}"

def process_rust_code(code):
    code = code.replace("{:.6f}", "{:.6}")
    code = re.sub(
        r'(println!$begin:math:text$"Execution Time: \\{\\:\\.6\\} seconds", duration\\.as_secs_f64)(\\s*)$',
        r'\\1())',
        code,
        flags=re.MULTILINE,
    )
    code = code.replace("max_val - min_val as u32 + 1", "((max_val - min_val + 1) as u32)")
    code = code.replace("1 << 32", "1u64 << 32")
    code = re.sub(r'($end:math:text$\s*as i64)\)', r'\1', code)
    return code

def execute_rust(code):
    code = code.replace("```rust\n", "").replace("```", "")
    lines = code.split('\n', 1)
    if lines and lines[0].strip().lower() == "rust":
        code = lines[1] if len(lines) > 1 else ""
    code = process_rust_code(code)
    with open("optimized.rs", "w") as f:
        f.write(code)
    try:
        compile_cmd = ["rustc", "optimized.rs", "-O", "-o", "optimized_rust"]
        subprocess.run(compile_cmd, check=True, text=True, capture_output=True)
        run_cmd = ["./optimized_rust"]
        run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)
        return run_result.stdout
    except subprocess.CalledProcessError as e:
        return f"Error:\n{e.stderr}"

def execute_target_code(code, target_language):
    """Select the appropriate execution function based on target language."""
    if target_language == "C++":
        return execute_cpp(code)
    elif target_language == "C":
        return execute_c(code)
    elif target_language == "Rust":
        return execute_rust(code)
    else:
        return "Unsupported language"

# Gradio UI setup
css = """
.python {background-color: #306998;}
.code {background-color: #050;}
"""

def launch_ui():
    with gr.Blocks(css=css) as ui:
        gr.Markdown("## Convert Python Code to C/C++/Rust")
        with gr.Row():
            python_box = gr.Textbox(label="Python code:", value=PYTHON_HARD, lines=10)
            converted_box = gr.Textbox(label="Converted Code:", lines=10)
        with gr.Row():
            model_dropdown = gr.Dropdown(
                ["GPT: gpt-4o", "GPT: gpt-4o-mini", "CLAUDE: claude-3-5-sonnet-20240620", "CLAUDE: claude-3-haiku-20240307", "HF: CodeQwen1.5-7B-Chat", "HF: bigcode/starcoder"],
                label="Select Model",
                value="GPT: gpt-4o"
            )
            target_lang_dropdown = gr.Dropdown(
                ["C++", "C", "Rust"],
                label="Select target language",
                value="C++"
            )
        with gr.Row():
            convert_btn = gr.Button("Convert code")
        with gr.Row():
            python_run_btn = gr.Button("Run Python")
            run_converted_btn = gr.Button("Run Converted Code")
        with gr.Row():
            python_out = gr.TextArea(label="Python result:", elem_classes=["python"])
            converted_out = gr.TextArea(label="Converted Code result:", elem_classes=["code"])
        convert_btn.click(
            optimize,
            inputs=[python_box, model_dropdown, target_lang_dropdown],
            outputs=[converted_box],
        )
        python_run_btn.click(execute_python, inputs=[python_box], outputs=[python_out])
        run_converted_btn.click(
            execute_target_code,
            inputs=[converted_box, target_lang_dropdown],
            outputs=[converted_out],
        )
    ui.launch()

# Example Python code blocks
PYTHON_HARD = """
# Support large number sizes
def lcg(seed, a=1664525, c=1013904223, m=2**32):
    value = seed
    while True:
        value = (a * value + c) % m
        yield value
def max_subarray_sum(n, seed, min_val, max_val):
    lcg_gen = lcg(seed)
    random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]
    max_sum = float('-inf')
    for i in range(n):
        current_sum = 0
        for j in range(i, n):
            current_sum += random_numbers[j]
            if current_sum > max_sum:
                max_sum = current_sum
    return max_sum
def total_max_subarray_sum(n, initial_seed, min_val, max_val):
    total_sum = 0
    lcg_gen = lcg(initial_seed)
    for _ in range(20):
        seed = next(lcg_gen)
        total_sum += max_subarray_sum(n, seed, min_val, max_val)
    return total_sum
n = 10000
initial_seed = 42
min_val = -10
max_val = 10
import time
start_time = time.time()
result = total_max_subarray_sum(n, initial_seed, min_val, max_val)
end_time = time.time()
print("Total Maximum Subarray Sum (20 runs):", result)
print("Execution Time: {:.6f} seconds".format(end_time - start_time))
"""

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(
        description="Single script with multiple executable sections and target language support"
    )
    parser.add_argument(
        "--mode",
        choices=["direct", "ui"],
        default="ui",
        help="Run direct conversion or launch Gradio UI",
    )
    args = parser.parse_args()

    if args.mode == "direct":
        print("\nExecuting Python code (PYTHON_HARD)...")
        exec(PYTHON_HARD)
        for partial in optimize(PYTHON_HARD, "GPT: gpt-4o", "C++"):
            print(partial, end="")
    elif args.mode == "ui":
        launch_ui()