File size: 39,621 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "4a6ab9a2-28a2-445d-8512-a0dc8d1b54e9",
   "metadata": {},
   "source": [
    "# Code Generator\n",
    "\n",
    "The requirement: use an Open Source model to generate high performance C++ code from Python code\n",
    "\n",
    "To replicate this, you'll need to set up a HuggingFace endpoint as I do in the video. It's simple to do, and it's quite satisfying to see the results!\n",
    "\n",
    "It's also an important part of your learning; this is the first example of deploying an open source model to be behind an API. We'll return to this in Week 8, but this should plant a seed in your mind for what's involved in moving open source models into production.\n",
    "\n",
    "Added the use of inference providers that was introduced recently by Hugging Face to convert the code.\n",
    "Improved the user prompt to include algorithic efficeiny and performance optimization.\n",
    "\n",
    "Added Java as a conversion option.\n",
    "\n",
    "Note: C++ commands work on windows environment.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "22e1567b-33fd-49e7-866e-4b635d15715a",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../important.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h1 style=\"color:#900;\">Important - Pause Endpoints when not in use</h1>\n",
    "            <span style=\"color:#900;\">\n",
    "            If you do decide to use HuggingFace endpoints for this project, you should stop or pause the endpoints when you are done to avoid accruing unnecessary running cost. The costs are very low as long as you only run the endpoint when you're using it. Navigate to the HuggingFace endpoint UI <a href=\"https://ui.endpoints.huggingface.co/\">here,</a> open your endpoint, and click Pause to put it on pause so you no longer pay for it.  \n",
    "Many thanks to student John L. for raising this.\n",
    "<br/><br/>\n",
    "In week 8 we will use Modal instead of HuggingFace endpoints; with Modal you only pay for the time that you use it and you should get free credits.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 231,
   "id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import io\n",
    "import sys\n",
    "import json\n",
    "import requests\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import google.generativeai\n",
    "import anthropic\n",
    "from IPython.display import Markdown, display, update_display\n",
    "import gradio as gr\n",
    "import subprocess, re"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 198,
   "id": "4f672e1c-87e9-4865-b760-370fa605e614",
   "metadata": {},
   "outputs": [],
   "source": [
    "# environment\n",
    "\n",
    "load_dotenv()\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 199,
   "id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da",
   "metadata": {},
   "outputs": [],
   "source": [
    "# initialize\n",
    "\n",
    "openai = OpenAI()\n",
    "claude = anthropic.Anthropic()\n",
    "OPENAI_MODEL = \"gpt-4o\"\n",
    "CLAUDE_MODEL = \"claude-3-5-sonnet-20240620\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 200,
   "id": "2db60a72-d098-42ca-8ce2-1e037c86b718",
   "metadata": {},
   "outputs": [],
   "source": [
    "def system_prompt_for(language: str) -> str:\n",
    "    system_prompt = (\n",
    "        f\"You are an assistant that reimplements Python code in high performance {language.upper()} for an Windows intel i7.\"\n",
    "        f\"Respond only with {language.upper()} code; use comments sparingly and do not provide any explanation other than occasional comments.\"\n",
    "        f\"The {language.upper()} response needs to produce an identical output in the fastest possible time. Keep implementations of random number generators identical so that results match exactly.\"\n",
    "    )\n",
    "    return system_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 243,
   "id": "70583432-e851-40d1-a219-2fb32b830dc8",
   "metadata": {},
   "outputs": [],
   "source": [
    "#updated the original prompt to include algorithic efficeiny and performance optimization\n",
    "def user_prompt_for(python: str, language: str) -> str:\n",
    "    if language.lower() not in {\"cpp\", \"java\"}:\n",
    "        raise ValueError(\"Unsupported language. Please choose 'C++' or 'Java'.\")\n",
    "    \n",
    "    optimization_notes = {\n",
    "        \"cpp\": (\n",
    "            \"- Use `int64_t` instead of `int` where necessary to prevent overflows.\\n\"\n",
    "            \"- Ensure random number generation in C++ matches Python's output as closely as possible.\\n\"\n",
    "            \"- Avoid undefined behavior, such as bit shifts that exceed type width (`1UL << 32` is incorrect for `uint32_t`).\\n\"\n",
    "            \"- Utilize `std::vector` for dynamic arrays and prefer preallocation for efficiency.\\n\"\n",
    "            \"- Consider `std::array` or `std::span` when fixed-size arrays are sufficient.\\n\"\n",
    "            \"- Optimize with **SIMD**, cache-friendly structures, and memory alignment where necessary.\\n\"\n",
    "        ),\n",
    "        \"java\": (\n",
    "            \"- Use `long` instead of `int` where necessary to prevent overflows.\\n\"\n",
    "            \"- Ensure random number generation in Java matches Python's output as closely as possible.\\n\"\n",
    "            \"- Use `ArrayList` instead of primitive arrays if dynamic resizing is needed.\\n\"\n",
    "            \"- Utilize `BigInteger` if handling large numbers that could exceed `long`.\\n\"\n",
    "            \"- Optimize with **parallel streams** (`IntStream.parallel()`) and **efficient data structures** (`HashMap`, `LinkedList`, etc.).\\n\"\n",
    "        )\n",
    "    }\n",
    "\n",
    "    user_prompt = (\n",
    "        f\"First, analyze the given Python code to understand its core purpose and algorithmic approach. \"\n",
    "        f\"Then, implement a {language} solution that achieves the same output while prioritizing:\\n\"\n",
    "        \"1. **Algorithmic Efficiency** - Optimize time and space complexity, even if it means using a different approach.\\n\"\n",
    "        \"2. **Numerical Correctness** - Prevent integer overflows, use appropriate data types (`long`, `BigInteger`, etc.), \"\n",
    "        \"and ensure correct handling of edge cases.\\n\"\n",
    "        \"3. **Performance Optimization** - Utilize language-specific features for efficiency.\\n\\n\"\n",
    "        \n",
    "        \"### **Important Notes:**\\n\"\n",
    "        + optimization_notes[language.lower()] +\n",
    "        \"\\n### **Expected Response:**\\n\"\n",
    "        f\"Respond **only with {language} code**, including all necessary imports and ensuring the output matches the Python version exactly.\\n\\n\"\n",
    "        \n",
    "        \"Here's the Python code to analyze and optimize:\\n\\n\"\n",
    "        + python\n",
    "    )\n",
    "    \n",
    "    return user_prompt\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 202,
   "id": "c6190659-f54c-4951-bef4-4960f8e51cc4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def messages_for(python, language=\"cpp\"):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_prompt_for(language)},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(python, language)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 241,
   "id": "71e1ba8c-5b05-4726-a9f3-8d8c6257350b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# write to a file called optimized.cpp\n",
    "\n",
    "def write_output(code, file_name):\n",
    "    with open(file_name, \"w\") as f:\n",
    "        f.write(code)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 226,
   "id": "e7d2fea8-74c6-4421-8f1e-0e76d5b201b9",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize_gpt(python, language=\"cpp\"):    \n",
    "    stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python, language), stream=True)\n",
    "    reply = \"\"\n",
    "    for chunk in stream:\n",
    "        fragment = chunk.choices[0].delta.content or \"\"\n",
    "        reply += fragment\n",
    "        print(fragment, end='', flush=True)\n",
    "    file_name= f\"optimized.{language}\"\n",
    "    if language == \"java\":\n",
    "        # Extract class name from Java code\n",
    "        match = re.search(r\"\\b(public\\s+)?class\\s+(\\w+)\", reply)\n",
    "        class_name = match.group(2) if match else \"OptimizedJava\"\n",
    "        file_name = f\"{class_name}.java\"\n",
    "    else:\n",
    "        file_name = f\"optimized.{language}\"\n",
    "    write_output(reply, file_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 227,
   "id": "7cd84ad8-d55c-4fe0-9eeb-1895c95c4a9d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize_claude(python, language=\"cpp\"):\n",
    "    result = claude.messages.stream(\n",
    "        model=CLAUDE_MODEL,\n",
    "        max_tokens=2000,\n",
    "        system=system_message,\n",
    "        messages=[{\"role\": \"user\", \"content\": user_prompt_for(python, language)}],\n",
    "    )\n",
    "    reply = \"\"\n",
    "    with result as stream:\n",
    "        for text in stream.text_stream:\n",
    "            reply += text\n",
    "            print(text, end=\"\", flush=True)\n",
    "    if language == \"java\":\n",
    "        # Extract class name from Java code\n",
    "        match = re.search(r\"\\b(public\\s+)?class\\s+(\\w+)\", reply)\n",
    "        class_name = match.group(2) if match else \"OptimizedJava\"\n",
    "        file_name = f\"{class_name}.java\"\n",
    "    else:\n",
    "        file_name = f\"optimized.{language}\"\n",
    "    write_output(reply, file_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 206,
   "id": "a1cbb778-fa57-43de-b04b-ed523f396c38",
   "metadata": {},
   "outputs": [],
   "source": [
    "pi = \"\"\"\n",
    "import time\n",
    "\n",
    "def calculate(iterations, param1, param2):\n",
    "    result = 1.0\n",
    "    for i in range(1, iterations+1):\n",
    "        j = i * param1 - param2\n",
    "        result -= (1/j)\n",
    "        j = i * param1 + param2\n",
    "        result += (1/j)\n",
    "    return result\n",
    "\n",
    "start_time = time.time()\n",
    "result = calculate(100_000_000, 4, 1) * 4\n",
    "end_time = time.time()\n",
    "\n",
    "print(f\"Result: {result:.12f}\")\n",
    "print(f\"Execution Time: {(end_time - start_time):.6f} seconds\")\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "id": "7fe1cd4b-d2c5-4303-afed-2115a3fef200",
   "metadata": {},
   "outputs": [],
   "source": [
    "exec(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 91,
   "id": "105db6f9-343c-491d-8e44-3a5328b81719",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_gpt(pi, \"java\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bf26ee95-0c77-491d-9a91-579a1e96a8a3",
   "metadata": {},
   "outputs": [],
   "source": [
    "exec(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4194e40c-04ab-4940-9d64-b4ad37c5bb40",
   "metadata": {},
   "outputs": [],
   "source": [
    "!g++ -O3 -std=c++17 -march=native -o optimized optimized.cpp\n",
    "!optimized.exe"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "983a11fe-e24d-4c65-8269-9802c5ef3ae6",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_claude(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d5a766f9-3d23-4bb4-a1d4-88ec44b61ddf",
   "metadata": {},
   "outputs": [],
   "source": [
    "!g++ -O3 -std=c++17 -march=native -o optimized optimized.cpp\n",
    "!optimized.exe"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 207,
   "id": "c3b497b3-f569-420e-b92e-fb0f49957ce0",
   "metadata": {},
   "outputs": [],
   "source": [
    "python_hard = \"\"\"# Be careful to support large number sizes\n",
    "\n",
    "def lcg(seed, a=1664525, c=1013904223, m=2**32):\n",
    "    value = seed\n",
    "    while True:\n",
    "        value = (a * value + c) % m\n",
    "        yield value\n",
    "        \n",
    "def max_subarray_sum(n, seed, min_val, max_val):\n",
    "    lcg_gen = lcg(seed)\n",
    "    random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]\n",
    "    max_sum = float('-inf')\n",
    "    for i in range(n):\n",
    "        current_sum = 0\n",
    "        for j in range(i, n):\n",
    "            current_sum += random_numbers[j]\n",
    "            if current_sum > max_sum:\n",
    "                max_sum = current_sum\n",
    "    return max_sum\n",
    "\n",
    "def total_max_subarray_sum(n, initial_seed, min_val, max_val):\n",
    "    total_sum = 0\n",
    "    lcg_gen = lcg(initial_seed)\n",
    "    for _ in range(20):\n",
    "        seed = next(lcg_gen)\n",
    "        total_sum += max_subarray_sum(n, seed, min_val, max_val)\n",
    "    return total_sum\n",
    "\n",
    "# Parameters\n",
    "n = 10000         # Number of random numbers\n",
    "initial_seed = 42 # Initial seed for the LCG\n",
    "min_val = -10     # Minimum value of random numbers\n",
    "max_val = 10      # Maximum value of random numbers\n",
    "\n",
    "# Timing the function\n",
    "import time\n",
    "start_time = time.time()\n",
    "result = total_max_subarray_sum(n, initial_seed, min_val, max_val)\n",
    "end_time = time.time()\n",
    "\n",
    "print(\"Total Maximum Subarray Sum (20 runs):\", result)\n",
    "print(\"Execution Time: {:.6f} seconds\".format(end_time - start_time))\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "dab5e4bc-276c-4555-bd4c-12c699d5e899",
   "metadata": {},
   "outputs": [],
   "source": [
    "exec(python_hard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8d24ed5-2c15-4f55-80e7-13a3952b3cb8",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_gpt(python_hard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0b3d073-88a2-40b2-831c-6f0c345c256f",
   "metadata": {},
   "outputs": [],
   "source": [
    "!g++ -O3 -std=c++17 -march=native -o optimized optimized.cpp\n",
    "!optimized.exe"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e9305446-1d0c-4b51-866a-b8c1e299bf5c",
   "metadata": {},
   "outputs": [],
   "source": [
    "optimize_claude(python_hard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0c181036-8193-4fdd-aef3-fc513b218d43",
   "metadata": {},
   "outputs": [],
   "source": [
    "!g++ -O3 -std=c++17 -march=native -o optimized optimized.cpp\n",
    "!optimized.exe"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 240,
   "id": "0be9f47d-5213-4700-b0e2-d444c7c738c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_gpt(python, language=\"cpp\"):    \n",
    "    stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python, language), stream=True)\n",
    "    reply = \"\"\n",
    "    code_block = f\"```{language}\\n\"\n",
    "    for chunk in stream:\n",
    "        fragment = chunk.choices[0].delta.content or \"\"\n",
    "        reply += fragment\n",
    "        cleaned_reply = reply.replace(code_block,'').replace('```','')\n",
    "        yield cleaned_reply"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 239,
   "id": "8669f56b-8314-4582-a167-78842caea131",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_claude(python, language=\"cpp\"):\n",
    "    result = claude.messages.stream(\n",
    "        model=CLAUDE_MODEL,\n",
    "        max_tokens=2000,\n",
    "        system=system_message,\n",
    "        messages=[{\"role\": \"user\", \"content\": user_prompt_for(python, language)}],\n",
    "    )\n",
    "    reply = \"\"\n",
    "    code_block = f\"```{language}\\n\"\n",
    "    with result as stream:\n",
    "        for text in stream.text_stream:\n",
    "            reply += text\n",
    "            cleaned_reply = reply.replace(code_block,'').replace('```','')\n",
    "            yield cleaned_reply"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 186,
   "id": "2f1ae8f5-16c8-40a0-aa18-63b617df078d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize(python, model):\n",
    "    if model==\"GPT\":\n",
    "        result = stream_gpt(python)\n",
    "    elif model==\"Claude\":\n",
    "        result = stream_claude(python)\n",
    "    else:\n",
    "        raise ValueError(\"Unknown model\")\n",
    "    for stream_so_far in result:\n",
    "        yield stream_so_far        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 189,
   "id": "f1ddb38e-6b0a-4c37-baa4-ace0b7de887a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7888/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 189,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "with gr.Blocks() as ui:\n",
    "    with gr.Row():\n",
    "        python = gr.Textbox(label=\"Python code:\", lines=10, value=python_hard)\n",
    "        cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
    "    with gr.Row():\n",
    "        model = gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\", value=\"GPT\")\n",
    "        convert = gr.Button(\"Convert code\")\n",
    "\n",
    "    convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 210,
   "id": "19bf2bff-a822-4009-a539-f003b1651383",
   "metadata": {},
   "outputs": [],
   "source": [
    "def execute_python(code):\n",
    "    try:\n",
    "        output = io.StringIO()\n",
    "        sys.stdout = output\n",
    "        exec(code)\n",
    "    finally:\n",
    "        sys.stdout = sys.__stdout__\n",
    "    return output.getvalue()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 211,
   "id": "9a2274f1-d03b-42c0-8dcc-4ce159b18442",
   "metadata": {},
   "outputs": [],
   "source": [
    "css = \"\"\"\n",
    ".python {background-color: #306998;}\n",
    ".cpp {background-color: #050;}\n",
    ".java {background-color: #306775;}\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "id": "f1303932-160c-424b-97a8-d28c816721b2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7868/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 97,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "with gr.Blocks(css=css) as ui:\n",
    "    gr.Markdown(\"## Convert code from Python to C++\")\n",
    "    with gr.Row():\n",
    "        python = gr.Textbox(label=\"Python code:\", value=python_hard, lines=10)\n",
    "        cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
    "    with gr.Row():\n",
    "        model = gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\", value=\"GPT\")\n",
    "    with gr.Row():\n",
    "        convert = gr.Button(\"Convert code\")\n",
    "    with gr.Row():\n",
    "        python_run = gr.Button(\"Run Python\")\n",
    "        cpp_run = gr.Button(\"Run C++\")\n",
    "    with gr.Row():\n",
    "        python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n",
    "        cpp_out = gr.TextArea(label=\"C++ result:\", elem_classes=[\"cpp\"])\n",
    "\n",
    "    convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
    "    python_run.click(execute_python, inputs=[python], outputs=[python_out])\n",
    "    cpp_run.click(execute_cpp, inputs=[cpp], outputs=[cpp_out])\n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 191,
   "id": "bb8c5b4e-ec51-4f21-b3f8-6aa94fede86d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import login, InferenceClient"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 117,
   "id": "13347633-4606-4e38-9927-80c39e65c1f1",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured.\n"
     ]
    }
   ],
   "source": [
    "hf_token = os.environ['HF_TOKEN']\n",
    "login(hf_token)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 118,
   "id": "ef60a4df-6267-4ebd-8eed-dcb917af0a5e",
   "metadata": {},
   "outputs": [],
   "source": [
    "code_qwen = \"Qwen/CodeQwen1.5-7B-Chat\"\n",
    "code_gemma = \"google/codegemma-7b-it\"\n",
    "messages=messages_for(pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 119,
   "id": "3825d77a-03c6-42b2-89bc-ccbcb1585740",
   "metadata": {},
   "outputs": [
    {
     "ename": "HfHubHTTPError",
     "evalue": "402 Client Error: Payment Required for url: https://huggingface.co/api/inference-proxy/sambanova/v1/chat/completions (Request ID: Root=1-67afb729-1eb9aff1704314144ef14e59;2df843ad-b7d2-4145-bb7b-1cfd94ae19ef)\n\nYou have exceeded your monthly included credits for Inference Endpoints. Subscribe to PRO to get 20x more monthly allowance.",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mHTTPError\u001b[0m                                 Traceback (most recent call last)",
      "File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\huggingface_hub\\utils\\_http.py:406\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[1;34m(response, endpoint_name)\u001b[0m\n\u001b[0;32m    405\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 406\u001b[0m     \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    407\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\requests\\models.py:1024\u001b[0m, in \u001b[0;36mResponse.raise_for_status\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m   1023\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m http_error_msg:\n\u001b[1;32m-> 1024\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m HTTPError(http_error_msg, response\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n",
      "\u001b[1;31mHTTPError\u001b[0m: 402 Client Error: Payment Required for url: https://huggingface.co/api/inference-proxy/sambanova/v1/chat/completions",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[1;31mHfHubHTTPError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[119], line 5\u001b[0m\n\u001b[0;32m      1\u001b[0m client \u001b[38;5;241m=\u001b[39m InferenceClient(\n\u001b[0;32m      2\u001b[0m \tprovider\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msambanova\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m      3\u001b[0m \tapi_key\u001b[38;5;241m=\u001b[39mhf_token\n\u001b[0;32m      4\u001b[0m )\n\u001b[1;32m----> 5\u001b[0m stream \u001b[38;5;241m=\u001b[39m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompletions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m      6\u001b[0m \u001b[43m\t\u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mQwen/Qwen2.5-Coder-32B-Instruct\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[0;32m      7\u001b[0m \u001b[43m\t\u001b[49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[0;32m      8\u001b[0m \u001b[43m\t\u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m500\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m      9\u001b[0m \u001b[43m\t\u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[0;32m     10\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m     12\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m stream:\n\u001b[0;32m     13\u001b[0m     \u001b[38;5;28mprint\u001b[39m(chunk\u001b[38;5;241m.\u001b[39mchoices[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mdelta\u001b[38;5;241m.\u001b[39mcontent, end\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\huggingface_hub\\inference\\_client.py:970\u001b[0m, in \u001b[0;36mInferenceClient.chat_completion\u001b[1;34m(self, messages, model, stream, frequency_penalty, logit_bias, logprobs, max_tokens, n, presence_penalty, response_format, seed, stop, stream_options, temperature, tool_choice, tool_prompt, tools, top_logprobs, top_p)\u001b[0m\n\u001b[0;32m    943\u001b[0m parameters \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m    944\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m: payload_model,\n\u001b[0;32m    945\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfrequency_penalty\u001b[39m\u001b[38;5;124m\"\u001b[39m: frequency_penalty,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    961\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream_options\u001b[39m\u001b[38;5;124m\"\u001b[39m: stream_options,\n\u001b[0;32m    962\u001b[0m }\n\u001b[0;32m    963\u001b[0m request_parameters \u001b[38;5;241m=\u001b[39m provider_helper\u001b[38;5;241m.\u001b[39mprepare_request(\n\u001b[0;32m    964\u001b[0m     inputs\u001b[38;5;241m=\u001b[39mmessages,\n\u001b[0;32m    965\u001b[0m     parameters\u001b[38;5;241m=\u001b[39mparameters,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    968\u001b[0m     api_key\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtoken,\n\u001b[0;32m    969\u001b[0m )\n\u001b[1;32m--> 970\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inner_post\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest_parameters\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    972\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m stream:\n\u001b[0;32m    973\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m _stream_chat_completion_response(data)  \u001b[38;5;66;03m# type: ignore[arg-type]\u001b[39;00m\n",
      "File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\huggingface_hub\\inference\\_client.py:327\u001b[0m, in \u001b[0;36mInferenceClient._inner_post\u001b[1;34m(self, request_parameters, stream)\u001b[0m\n\u001b[0;32m    324\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m InferenceTimeoutError(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInference call timed out: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mrequest_parameters\u001b[38;5;241m.\u001b[39murl\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01merror\u001b[39;00m  \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[0;32m    326\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 327\u001b[0m     \u001b[43mhf_raise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponse\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    328\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m response\u001b[38;5;241m.\u001b[39miter_lines() \u001b[38;5;28;01mif\u001b[39;00m stream \u001b[38;5;28;01melse\u001b[39;00m response\u001b[38;5;241m.\u001b[39mcontent\n\u001b[0;32m    329\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m error:\n",
      "File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\huggingface_hub\\utils\\_http.py:477\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[1;34m(response, endpoint_name)\u001b[0m\n\u001b[0;32m    473\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m _format(HfHubHTTPError, message, response) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[0;32m    475\u001b[0m \u001b[38;5;66;03m# Convert `HTTPError` into a `HfHubHTTPError` to display request information\u001b[39;00m\n\u001b[0;32m    476\u001b[0m \u001b[38;5;66;03m# as well (request id and/or server error message)\u001b[39;00m\n\u001b[1;32m--> 477\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m _format(HfHubHTTPError, \u001b[38;5;28mstr\u001b[39m(e), response) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n",
      "\u001b[1;31mHfHubHTTPError\u001b[0m: 402 Client Error: Payment Required for url: https://huggingface.co/api/inference-proxy/sambanova/v1/chat/completions (Request ID: Root=1-67afb729-1eb9aff1704314144ef14e59;2df843ad-b7d2-4145-bb7b-1cfd94ae19ef)\n\nYou have exceeded your monthly included credits for Inference Endpoints. Subscribe to PRO to get 20x more monthly allowance."
     ]
    }
   ],
   "source": [
    "client = InferenceClient(\n",
    "\tprovider=\"sambanova\",\n",
    "\tapi_key=hf_token\n",
    ")\n",
    "stream = client.chat.completions.create(\n",
    "\tmodel=\"Qwen/Qwen2.5-Coder-32B-Instruct\", \n",
    "\tmessages=messages, \n",
    "\tmax_tokens=500,\n",
    "\tstream=True\n",
    ")\n",
    "\n",
    "for chunk in stream:\n",
    "    print(chunk.choices[0].delta.content, end=\"\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "id": "cc0c3e9c-2572-41d1-a476-6eae96b20695",
   "metadata": {},
   "outputs": [],
   "source": [
    "# using inference providers\n",
    "def stream_code_qwen(python):\n",
    "    messages = messages_for(python)\n",
    "    client = InferenceClient(\n",
    "    \tprovider=\"sambanova\",\n",
    "    \tapi_key=hf_token\n",
    "    )\n",
    "    stream = client.chat.completions.create(\n",
    "    \tmodel=\"Qwen/Qwen2.5-Coder-32B-Instruct\", \n",
    "    \tmessages=messages, \n",
    "    \tmax_tokens=500,\n",
    "    \tstream=True\n",
    "    )\n",
    "    result = \"\"\n",
    "    for chunk in stream:\n",
    "        if chunk.choices and chunk.choices[0].delta.content:\n",
    "            result += chunk.choices[0].delta.content\n",
    "            yield result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 212,
   "id": "a82387d1-7651-4923-995b-fe18356fcaa6",
   "metadata": {},
   "outputs": [],
   "source": [
    "def optimize(python, model, language):\n",
    "    if model==\"GPT\":\n",
    "        result = stream_gpt(python, language)\n",
    "    elif model==\"Claude\":\n",
    "        result = stream_claude(python, language)\n",
    "    elif model==\"CodeQwen\":\n",
    "        result = stream_code_qwen(python, language)\n",
    "    else:\n",
    "        raise ValueError(\"Unknown model\")\n",
    "    for stream_so_far in result:\n",
    "        yield stream_so_far    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 213,
   "id": "4ba311ec-c16a-4fe0-946b-4b940704cf65",
   "metadata": {},
   "outputs": [],
   "source": [
    "def select_sample_program(sample_program):\n",
    "    if sample_program==\"pi\":\n",
    "        return pi\n",
    "    elif sample_program==\"python_hard\":\n",
    "        return python_hard\n",
    "    else:\n",
    "        return \"Type your Python program here\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 214,
   "id": "06148e88-501b-4686-a41d-c3be528d8e6f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def execute_cpp(code):\n",
    "        write_output(code, \"optimized.exe\")\n",
    "        try:\n",
    "            compile_cmd = [\"g++\", \"-Ofast\", \"-std=c++17\", \"-march=native\", \"-mtune=intel\", \"-o\", \"optimized\", \"optimized.cpp\"]\n",
    "            compile_result = subprocess.run(compile_cmd, check=True, text=True, capture_output=True)\n",
    "            run_cmd = [\"optimized.exe\"]\n",
    "            run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)\n",
    "            return run_result.stdout\n",
    "        except subprocess.CalledProcessError as e:\n",
    "            return f\"An error occurred:\\n{e.stderr}\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 236,
   "id": "a42e3871-f3a5-4f14-836c-1e8ecacb56b5",
   "metadata": {},
   "outputs": [],
   "source": [
    "def execute_java(code):\n",
    "    # Extract the class name from the Java code\n",
    "    match = re.search(r\"\\b(public\\s+)?class\\s+(\\w+)\", code)\n",
    "    class_name = match.group(2) if match else \"OptimizedJava\"\n",
    "\n",
    "    file_name = f\"{class_name}.java\"\n",
    "    write_output(code, file_name)\n",
    "    try:\n",
    "        compile_cmd =[\"javac\", file_name]\n",
    "        subprocess.run(compile_cmd, check=True, text=True, capture_output=True)\n",
    "        run_cmd = [\"java\", class_name]\n",
    "        run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)\n",
    "        return run_result.stdout\n",
    "    except subprocess.CalledProcessError as e:\n",
    "        return f\"Error during compilation or execution:\\n{e.stderr}\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 238,
   "id": "f9ca2e6f-60c1-4e5f-b570-63c75b2d189b",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7901/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 238,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "with gr.Blocks(css=css) as ui:\n",
    "    gr.Markdown(\"## Convert code from Python to C++ or Java\")\n",
    "    #input and output\n",
    "    with gr.Row():\n",
    "        python = gr.Textbox(label=\"Python code:\", value=python_hard, lines=10)\n",
    "        converted_code = gr.Textbox(label=\"Converted code:\", lines=10)\n",
    "        # java = gr.Textbox(label=\"Java code:\", lines=10)\n",
    "    #sample programs\n",
    "    with gr.Row():\n",
    "        with gr.Column():\n",
    "            sample_program = gr.Radio([\"pi\", \"python_hard\"], label=\"Sample program\", value=\"python_hard\")\n",
    "    #select model and language\n",
    "    with gr.Row():\n",
    "        with gr.Column():\n",
    "            model = gr.Dropdown([\"GPT\", \"Claude\", \"CodeQwen\"], label=\"Select model\", value=\"GPT\")\n",
    "            language = gr.Dropdown([\"C++\",\"Java\"], label=\"Select language\", value=\"C++\")\n",
    "    with gr.Row():\n",
    "        convert = gr.Button(\"Convert\")\n",
    "    #Code execution\n",
    "    with gr.Row():\n",
    "        python_run = gr.Button(\"Run Python\")\n",
    "        converted_run = gr.Button(\"Run converted code\")\n",
    "    with gr.Row():\n",
    "        python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n",
    "        output = gr.TextArea(label=\"Converted code result:\", elem_classes=[\"cpp\"])\n",
    "        \n",
    "    # Function to convert Python code based on language\n",
    "    def convert_code(python_code, model, selected_language):\n",
    "        if selected_language == \"C++\":\n",
    "            for chunk in optimize(python_code, model, \"cpp\"):\n",
    "                yield chunk  # Stream each chunk\n",
    "        elif selected_language == \"Java\":\n",
    "            for chunk in optimize(python_code, model, \"java\"):\n",
    "                yield chunk\n",
    "        return \"\"\n",
    "\n",
    "    # Function to execute converted code\n",
    "    def run_code(converted_code, selected_language):\n",
    "        if selected_language == \"C++\":\n",
    "            return execute_cpp(converted_code)\n",
    "        elif selected_language == \"Java\":\n",
    "            return execute_java(converted_code)\n",
    "        return \"Invalid language selection\"\n",
    "\n",
    "    sample_program.change(select_sample_program, inputs=[sample_program], outputs=[python])\n",
    "    convert.click(convert_code, inputs=[python, model, language], outputs=[converted_code])\n",
    "    converted_run.click(run_code, inputs=[converted_code, language], outputs=[output])   \n",
    "    python_run.click(execute_python, inputs=[python], outputs=[python_out])\n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9d0ad093-425b-488e-8c3f-67f729dd9c06",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}