File size: 10,657 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "T-6b4FqreeIl",
        "collapsed": true
      },
      "outputs": [],
      "source": [
        "!pip install -q requests torch bitsandbytes transformers sentencepiece accelerate openai gradio"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "#imports\n",
        "\n",
        "import time\n",
        "from io import StringIO\n",
        "import torch\n",
        "import numpy as np\n",
        "import pandas as pd\n",
        "import random\n",
        "from openai import OpenAI\n",
        "from sqlalchemy import create_engine\n",
        "from google.colab import drive, userdata\n",
        "import gradio as gr\n",
        "from huggingface_hub import login\n",
        "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig"
      ],
      "metadata": {
        "id": "JXpWOzKve7kr"
      },
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Model Constants\n",
        "LLAMA = \"meta-llama/Meta-Llama-3.1-8B-Instruct\""
      ],
      "metadata": {
        "id": "rcv0lCS5GRPX"
      },
      "execution_count": 4,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Authentication\n",
        "\n",
        "hf_token = userdata.get(\"HF_TOKEN\")\n",
        "openai_api_key = userdata.get(\"OPENAI_API_KEY\")\n",
        "if not hf_token or not openai_api_key:\n",
        " raise ValueError(\"Missing HF_TOKEN or OPENAI_API_KEY. Set them as environment variables.\")\n",
        "\n",
        "login(hf_token, add_to_git_credential=True)\n",
        "openai = OpenAI(api_key=openai_api_key)"
      ],
      "metadata": {
        "id": "3XS-s_CwFSQU"
      },
      "execution_count": 5,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Tokenizer Setup\n",
        "\n",
        "tokenizer = AutoTokenizer.from_pretrained(LLAMA)\n",
        "tokenizer.pad_token = tokenizer.eos_token"
      ],
      "metadata": {
        "id": "oRdmdzXoF_f9"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Model Quantization for Performance Optimization\n",
        "\n",
        "quant_config = BitsAndBytesConfig(\n",
        "    load_in_4bit=True,\n",
        "    bnb_4bit_use_double_quant=True,\n",
        "    bnb_4bit_compute_dtype=torch.bfloat16,\n",
        "    bnb_4bit_quant_type=\"nf4\"\n",
        ")"
      ],
      "metadata": {
        "id": "kRN0t2yrGmAe"
      },
      "execution_count": 7,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Load Model Efficiency\n",
        "\n",
        "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
        "model = AutoModelForCausalLM.from_pretrained(LLAMA, device_map=\"auto\", quantization_config=quant_config)"
      ],
      "metadata": {
        "id": "fYPyudKHGuE9"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def generate_ev_driver(num_records, address_type):\n",
        "    # Adjusting the prompt based on checkbox selection\n",
        "    address_prompts = {\n",
        "        \"international\": f\"Generate {num_records} rows of synthetic personal data with international addresses and phone numbers.\",\n",
        "        \"us_only\": f\"Generate {num_records} rows of synthetic personal data with U.S.-only addresses and phone numbers.\",\n",
        "        \"us_international\": f\"Generate {num_records} rows of synthetic personal data with a mix of U.S. and international addresses and phone numbers.\",\n",
        "        \"americas\": f\"Generate {num_records} rows of synthetic personal data with a mix of U.S., Canada, Central America, and South America addresses and phone numbers.\",\n",
        "        \"europe\": f\"Generate {num_records} rows of synthetic personal data with Europe-only addresses and phone numbers.\",\n",
        "    }\n",
        "\n",
        "    address_prompt = address_prompts.get(address_type, \"Generate synthetic personal data.\")\n",
        "    # Generate unique driver IDs\n",
        "    driver_ids = random.sample(range(1, 1000001), num_records)\n",
        "\n",
        "    user_prompt = f\"\"\"\n",
        "    {address_prompt}\n",
        "    Each row should include:\n",
        "    - driverid (unique from the provided list: {driver_ids})\n",
        "    - first_name (string)\n",
        "    - last_name (string)\n",
        "    - email (string)\n",
        "    - phone_number (string)\n",
        "    - address (string)\n",
        "    - city (string)\n",
        "    - state (string)\n",
        "    - zip_code (string)\n",
        "    - country (string)\n",
        "\n",
        "    Ensure the CSV format is valid, with proper headers and comma separation.\n",
        "    \"\"\"\n",
        "\n",
        "    response = openai.chat.completions.create(\n",
        "        model=\"gpt-4o-mini\",\n",
        "        messages=[\n",
        "            {\"role\": \"system\", \"content\": \"You are a helpful assistant that generates structured CSV data.\"},\n",
        "            {\"role\": \"user\", \"content\": user_prompt}\n",
        "        ]\n",
        "    )\n",
        "\n",
        "    # Call the new function to clean and extract the CSV data\n",
        "    return clean_and_extract_csv(response)"
      ],
      "metadata": {
        "id": "9q9ccNr8fMyg"
      },
      "execution_count": 12,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def clean_and_extract_csv(response):\n",
        "    # Clean up the response and remove the last occurrence of the code block formatting\n",
        "    csv_data = response.choices[0].message.content.strip()\n",
        "    csv_data = csv_data.rsplit(\"```\", 1)[0].strip()\n",
        "\n",
        "    # Define header and split the content to extract the data\n",
        "    header = \"driverid,first_name,last_name,email,phone_number,address,city,state,zip_code,country\"\n",
        "    _, *content = csv_data.split(header, 1)\n",
        "\n",
        "    # Return the cleaned CSV data along with the header\n",
        "    return header + content[0].split(\"\\n\\n\")[0] if content else csv_data"
      ],
      "metadata": {
        "id": "So1aGRNJBUyv"
      },
      "execution_count": 13,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def update_dataset(num_records, address_type):\n",
        "    response = generate_ev_driver(num_records, address_type)\n",
        "\n",
        "    # Convert response to DataFrame\n",
        "    try:\n",
        "        df = pd.read_csv(StringIO(response))\n",
        "    except Exception as e:\n",
        "        return pd.DataFrame(), f\"Error parsing dataset: {str(e)}\"\n",
        "\n",
        "    return df, response"
      ],
      "metadata": {
        "id": "T0KxUm2yYtuQ"
      },
      "execution_count": 14,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Function to handle address type selection\n",
        "def check_address_selection(selected_type):\n",
        "    if not selected_type:\n",
        "        # Return the error message and set button to yellow and disabled\n",
        "        return (\n",
        "            \"<span style='color:red;'>⚠️ Address type is required. Please select one.</span>\",\n",
        "            gr.update(interactive=False, elem_classes=\"yellow_btn\")\n",
        "        )\n",
        "    # Return success message and set button to blue and enabled\n",
        "    return (\n",
        "        \"<span style='color:green;'>Ready to generate dataset.</span>\",\n",
        "        gr.update(interactive=True, elem_classes=\"blue_btn\")\n",
        "    )\n"
      ],
      "metadata": {
        "id": "z5pFDbnTz-fP"
      },
      "execution_count": 15,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Gradio UI\n",
        "with gr.Blocks() as app:\n",
        "    gr.Markdown(\"## Dynamic CSV Dataset Viewer\")\n",
        "\n",
        "    num_records_slider = gr.Slider(minimum=5, maximum=50, step=5, value=20, label=\"Number of Records\")\n",
        "\n",
        "    with gr.Row(equal_height=True):\n",
        "        address_type_radio = gr.Radio(\n",
        "            [\"us_only\", \"international\", \"us_international\", \"americas\", \"europe\"],\n",
        "            value=\"\",\n",
        "            label=\"Address and Phone Type\",\n",
        "            info=\"Select the type of addresses and phone numbers\"\n",
        "        )\n",
        "        status_text = gr.Markdown(\n",
        "            \"<span style='color:red;'>⚠️ Please select an address type above to proceed.</span>\",\n",
        "            elem_id=\"status_text\"\n",
        "        )\n",
        "\n",
        "    generate_btn = gr.Button(\"Generate Data\", interactive=True, elem_id=\"generate_btn\")\n",
        "\n",
        "    response_text = gr.Textbox(value=\"\", label=\"Generated Driver List CSV\", interactive=False)\n",
        "    dataframe_output = gr.Dataframe(value=pd.DataFrame(), label=\"Generated Driver List Dataset\")\n",
        "\n",
        "    # Update status text and button style dynamically\n",
        "    address_type_radio.change(fn=check_address_selection, inputs=[address_type_radio], outputs=[status_text, generate_btn])\n",
        "\n",
        "    generate_btn.click(update_dataset, inputs=[num_records_slider, address_type_radio], outputs=[dataframe_output, response_text])\n",
        "\n",
        "    # Custom CSS for button colors\n",
        "    app.css = \"\"\"\n",
        "    .blue_btn {\n",
        "        background-color: green;\n",
        "        color: white;\n",
        "    }\n",
        "    \"\"\"\n",
        "\n",
        "app.launch(share=True)  # Ensure sharing is enabled in Colab"
      ],
      "metadata": {
        "id": "z3K6PfAiL2ZA"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}