File size: 26,008 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ddfa9ae6-69fe-444a-b994-8c4c5970a7ec",
   "metadata": {},
   "source": [
    "# Project - Airline AI Assistant\n",
    "\n",
    "We'll now bring together what we've learned to make an AI Customer Support assistant for an Airline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8b50bbe2-c0b1-49c3-9a5c-1ba7efa2bcb4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import json\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "747e8786-9da8-4342-b6c9-f5f69c2e22ae",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialization\n",
    "\n",
    "load_dotenv(override=True)\n",
    "\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")\n",
    "    \n",
    "MODEL = \"gpt-4o-mini\"\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0a521d84-d07c-49ab-a0df-d6451499ed97",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_message = \"You are a helpful assistant for an Airline called FlightAI. \"\n",
    "system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n",
    "system_message += \"Always be accurate. If you don't know the answer, say so.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "61a2a15d-b559-4844-b377-6bd5cb4949f6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n",
    "\n",
    "def chat(message, history):\n",
    "    messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
    "    return response.choices[0].message.content\n",
    "\n",
    "gr.ChatInterface(fn=chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "36bedabf-a0a7-4985-ad8e-07ed6a55a3a4",
   "metadata": {},
   "source": [
    "## Tools\n",
    "\n",
    "Tools are an incredibly powerful feature provided by the frontier LLMs.\n",
    "\n",
    "With tools, you can write a function, and have the LLM call that function as part of its response.\n",
    "\n",
    "Sounds almost spooky.. we're giving it the power to run code on our machine?\n",
    "\n",
    "Well, kinda."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0696acb1-0b05-4dc2-80d5-771be04f1fb2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's start by making a useful function\n",
    "\n",
    "ticket_prices = {\"london\": \"$799\", \"paris\": \"$899\", \"tokyo\": \"$1400\", \"berlin\": \"$499\"}\n",
    "\n",
    "def get_ticket_price(destination_city):\n",
    "    print(f\"Tool get_ticket_price called for {destination_city}\")\n",
    "    city = destination_city.lower()\n",
    "    return ticket_prices.get(city, \"Unknown\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "80ca4e09-6287-4d3f-997d-fa6afbcf6c85",
   "metadata": {},
   "outputs": [],
   "source": [
    "get_ticket_price(\"London\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4afceded-7178-4c05-8fa6-9f2085e6a344",
   "metadata": {},
   "outputs": [],
   "source": [
    "# There's a particular dictionary structure that's required to describe our function:\n",
    "\n",
    "price_function = {\n",
    "    \"name\": \"get_ticket_price\",\n",
    "    \"description\": \"Get the price of a return ticket to the destination city. Call this whenever you need to know the ticket price, for example when a customer asks 'How much is a ticket to this city'\",\n",
    "    \"parameters\": {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"destination_city\": {\n",
    "                \"type\": \"string\",\n",
    "                \"description\": \"The city that the customer wants to travel to\",\n",
    "            },\n",
    "        },\n",
    "        \"required\": [\"destination_city\"],\n",
    "        \"additionalProperties\": False\n",
    "    }\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bdca8679-935f-4e7f-97e6-e71a4d4f228c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# And this is included in a list of tools:\n",
    "\n",
    "tools = [{\"type\": \"function\", \"function\": price_function}]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c3d3554f-b4e3-4ce7-af6f-68faa6dd2340",
   "metadata": {},
   "source": [
    "## Getting OpenAI to use our Tool\n",
    "\n",
    "There's some fiddly stuff to allow OpenAI \"to call our tool\"\n",
    "\n",
    "What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n",
    "\n",
    "Here's how the new chat function looks:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ce9b0744-9c78-408d-b9df-9f6fd9ed78cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history):\n",
    "    messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
    "\n",
    "    if response.choices[0].finish_reason==\"tool_calls\":\n",
    "        message = response.choices[0].message\n",
    "        response, city = handle_tool_call(message)\n",
    "        messages.append(message)\n",
    "        messages.append(response)\n",
    "        response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
    "    \n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b0992986-ea09-4912-a076-8e5603ee631f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# We have to write that function handle_tool_call:\n",
    "\n",
    "def handle_tool_call(message):\n",
    "    tool_call = message.tool_calls[0]\n",
    "    arguments = json.loads(tool_call.function.arguments)\n",
    "    city = arguments.get('destination_city')\n",
    "    price = get_ticket_price(city)\n",
    "    response = {\n",
    "        \"role\": \"tool\",\n",
    "        \"content\": json.dumps({\"destination_city\": city,\"price\": price}),\n",
    "        \"tool_call_id\": tool_call.id\n",
    "    }\n",
    "    return response, city"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4be8a71-b19e-4c2f-80df-f59ff2661f14",
   "metadata": {},
   "outputs": [],
   "source": [
    "gr.ChatInterface(fn=chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "473e5b39-da8f-4db1-83ae-dbaca2e9531e",
   "metadata": {},
   "source": [
    "# Let's go multi-modal!!\n",
    "\n",
    "We can use DALL-E-3, the image generation model behind GPT-4o, to make us some images\n",
    "\n",
    "Let's put this in a function called artist.\n",
    "\n",
    "### Price alert: each time I generate an image it costs about 4 cents - don't go crazy with images!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2c27c4ba-8ed5-492f-add1-02ce9c81d34c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Some imports for handling images\n",
    "\n",
    "import base64\n",
    "from io import BytesIO\n",
    "from PIL import Image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "773a9f11-557e-43c9-ad50-56cbec3a0f8f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def artist(city):\n",
    "    image_response = openai.images.generate(\n",
    "            model=\"dall-e-3\",\n",
    "            prompt=f\"An image representing a vacation in {city}, showing tourist spots and everything unique about {city}, in a vibrant pop-art style\",\n",
    "            size=\"1024x1024\",\n",
    "            n=1,\n",
    "            response_format=\"b64_json\",\n",
    "        )\n",
    "    image_base64 = image_response.data[0].b64_json\n",
    "    image_data = base64.b64decode(image_base64)\n",
    "    return Image.open(BytesIO(image_data))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d877c453-e7fb-482a-88aa-1a03f976b9e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "image = artist(\"New York City\")\n",
    "display(image)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "728a12c5-adc3-415d-bb05-82beb73b079b",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "f4975b87-19e9-4ade-a232-9b809ec75c9a",
   "metadata": {},
   "source": [
    "## Audio (NOTE - Audio is optional for this course - feel free to skip Audio if it causes trouble!)\n",
    "\n",
    "And let's make a function talker that uses OpenAI's speech model to generate Audio\n",
    "\n",
    "### Troubleshooting Audio issues\n",
    "\n",
    "If you have any problems running this code below (like a FileNotFound error, or a warning of a missing package), you may need to install FFmpeg, a very popular audio utility.\n",
    "\n",
    "**For PC Users**\n",
    "\n",
    "Detailed instructions are [here](https://chatgpt.com/share/6724efee-6b0c-8012-ac5e-72e2e3885905) and summary instructions:\n",
    "\n",
    "1. Download FFmpeg from the official website: https://ffmpeg.org/download.html\n",
    "\n",
    "2. Extract the downloaded files to a location on your computer (e.g., `C:\\ffmpeg`)\n",
    "\n",
    "3. Add the FFmpeg bin folder to your system PATH:\n",
    "- Right-click on 'This PC' or 'My Computer' and select 'Properties'\n",
    "- Click on 'Advanced system settings'\n",
    "- Click on 'Environment Variables'\n",
    "- Under 'System variables', find and edit 'Path'\n",
    "- Add a new entry with the path to your FFmpeg bin folder (e.g., `C:\\ffmpeg\\bin`)\n",
    "- Restart your command prompt, and within Jupyter Lab do Kernel -> Restart kernel, to pick up the changes\n",
    "\n",
    "4. Open a new command prompt and run this to make sure it's installed OK\n",
    "`ffmpeg -version`\n",
    "\n",
    "**For Mac Users**\n",
    "\n",
    "1. Install homebrew if you don't have it already by running this in a Terminal window and following any instructions:  \n",
    "`/bin/bash -c \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)\"`\n",
    "\n",
    "2. Then install FFmpeg with `brew install ffmpeg`\n",
    "\n",
    "3. Verify your installation with `ffmpeg -version` and if everything is good, within Jupyter Lab do Kernel -> Restart kernel to pick up the changes\n",
    "\n",
    "Message me or email me at [email protected] with any problems!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4cc90e80-c96e-4dd4-b9d6-386fe2b7e797",
   "metadata": {},
   "source": [
    "## To check you now have ffmpeg and can access it here\n",
    "\n",
    "Excecute the next cell to see if you get a version number. (Putting an exclamation mark before something in Jupyter Lab tells it to run it as a terminal command rather than python code).\n",
    "\n",
    "If this doesn't work, you may need to actually save and close down your Jupyter lab, and start it again from a new Terminal window (Mac) or Anaconda prompt (PC), remembering to activate the llms environment. This ensures you pick up ffmpeg.\n",
    "\n",
    "And if that doesn't work, please contact me!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7b3be0fb-1d34-4693-ab6f-dbff190afcd7",
   "metadata": {},
   "outputs": [],
   "source": [
    "!ffmpeg -version\n",
    "!ffprobe -version\n",
    "!ffplay -version"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d91d3f8f-e505-4e3c-a87c-9e42ed823db6",
   "metadata": {},
   "source": [
    "# For Mac users - and possibly many PC users too\n",
    "\n",
    "This version should work fine for you. It might work for Windows users too, but you might get a Permissions error writing to a temp file. If so, see the next section!\n",
    "\n",
    "As always, if you have problems, please contact me! (You could also comment out the audio talker() in the later code if you're less interested in audio generation)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ffbfe93b-5e86-4e68-ba71-b301cd5230db",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pydub import AudioSegment\n",
    "from pydub.playback import play\n",
    "\n",
    "def talker(message):\n",
    "    response = openai.audio.speech.create(\n",
    "      model=\"tts-1\",\n",
    "      voice=\"onyx\",    # Also, try replacing onyx with alloy\n",
    "      input=message\n",
    "    )\n",
    "    \n",
    "    audio_stream = BytesIO(response.content)\n",
    "    audio = AudioSegment.from_file(audio_stream, format=\"mp3\")\n",
    "    play(audio)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b88d775d-d357-4292-a1ad-5dc5ed567281",
   "metadata": {},
   "outputs": [],
   "source": [
    "talker(\"Well, hi there\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ad89a9bd-bb1e-4bbb-a49a-83af5f500c24",
   "metadata": {},
   "source": [
    "# For Windows users (or any Mac users with problems above)\n",
    "\n",
    "## First try the Mac version above, but if you get a permissions error writing to a temp file, then this code should work instead.\n",
    "\n",
    "A collaboration between students Mark M. and Patrick H. and Claude got this resolved!\n",
    "\n",
    "Below are 4 variations - hopefully one of them will work on your PC. If not, message me please!\n",
    "\n",
    "And for Mac people - all 3 of the below work on my Mac too - please try these if the Mac version gave you problems.\n",
    "\n",
    "## PC Variation 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d104b96a-02ca-4159-82fe-88e0452aa479",
   "metadata": {},
   "outputs": [],
   "source": [
    "import base64\n",
    "from io import BytesIO\n",
    "from PIL import Image\n",
    "from IPython.display import Audio, display\n",
    "\n",
    "def talker(message):\n",
    "    response = openai.audio.speech.create(\n",
    "        model=\"tts-1\",\n",
    "        voice=\"onyx\",\n",
    "        input=message)\n",
    "\n",
    "    audio_stream = BytesIO(response.content)\n",
    "    output_filename = \"output_audio.mp3\"\n",
    "    with open(output_filename, \"wb\") as f:\n",
    "        f.write(audio_stream.read())\n",
    "\n",
    "    # Play the generated audio\n",
    "    display(Audio(output_filename, autoplay=True))\n",
    "\n",
    "talker(\"Well, hi there\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3a5d11f4-bbd3-43a1-904d-f684eb5f3e3a",
   "metadata": {},
   "source": [
    "## PC Variation 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d59c8ebd-79c5-498a-bdf2-3a1c50d91aa0",
   "metadata": {},
   "outputs": [],
   "source": [
    "import tempfile\n",
    "import subprocess\n",
    "from io import BytesIO\n",
    "from pydub import AudioSegment\n",
    "import time\n",
    "\n",
    "def play_audio(audio_segment):\n",
    "    temp_dir = tempfile.gettempdir()\n",
    "    temp_path = os.path.join(temp_dir, \"temp_audio.wav\")\n",
    "    try:\n",
    "        audio_segment.export(temp_path, format=\"wav\")\n",
    "        time.sleep(3) # Student Dominic found that this was needed. You could also try commenting out to see if not needed on your PC\n",
    "        subprocess.call([\n",
    "            \"ffplay\",\n",
    "            \"-nodisp\",\n",
    "            \"-autoexit\",\n",
    "            \"-hide_banner\",\n",
    "            temp_path\n",
    "        ], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)\n",
    "    finally:\n",
    "        try:\n",
    "            os.remove(temp_path)\n",
    "        except Exception:\n",
    "            pass\n",
    " \n",
    "def talker(message):\n",
    "    response = openai.audio.speech.create(\n",
    "        model=\"tts-1\",\n",
    "        voice=\"onyx\",  # Also, try replacing onyx with alloy\n",
    "        input=message\n",
    "    )\n",
    "    audio_stream = BytesIO(response.content)\n",
    "    audio = AudioSegment.from_file(audio_stream, format=\"mp3\")\n",
    "    play_audio(audio)\n",
    "\n",
    "talker(\"Well hi there\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "96f90e35-f71e-468e-afea-07b98f74dbcf",
   "metadata": {},
   "source": [
    "## PC Variation 3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8597c7f8-7b50-44ad-9b31-db12375cd57b",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from pydub import AudioSegment\n",
    "from pydub.playback import play\n",
    "from io import BytesIO\n",
    "\n",
    "def talker(message):\n",
    "    # Set a custom directory for temporary files on Windows\n",
    "    custom_temp_dir = os.path.expanduser(\"~/Documents/temp_audio\")\n",
    "    os.environ['TEMP'] = custom_temp_dir  # You can also use 'TMP' if necessary\n",
    "    \n",
    "    # Create the folder if it doesn't exist\n",
    "    if not os.path.exists(custom_temp_dir):\n",
    "        os.makedirs(custom_temp_dir)\n",
    "    \n",
    "    response = openai.audio.speech.create(\n",
    "        model=\"tts-1\",\n",
    "        voice=\"onyx\",  # Also, try replacing onyx with alloy\n",
    "        input=message\n",
    "    )\n",
    "    \n",
    "    audio_stream = BytesIO(response.content)\n",
    "    audio = AudioSegment.from_file(audio_stream, format=\"mp3\")\n",
    "\n",
    "    play(audio)\n",
    "\n",
    "talker(\"Well hi there\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e821224c-b069-4f9b-9535-c15fdb0e411c",
   "metadata": {},
   "source": [
    "## PC Variation 4\n",
    "\n",
    "### Let's try a completely different sound library\n",
    "\n",
    "First run the next cell to install a new library, then try the cell below it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "69d3c0d9-afcc-49e3-b829-9c9869d8b472",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install simpleaudio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "28f9cc99-36b7-4554-b3f4-f2012f614a13",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pydub import AudioSegment\n",
    "from io import BytesIO\n",
    "import tempfile\n",
    "import os\n",
    "import simpleaudio as sa\n",
    "\n",
    "def talker(message):\n",
    "    response = openai.audio.speech.create(\n",
    "        model=\"tts-1\",\n",
    "        voice=\"onyx\",  # Also, try replacing onyx with alloy\n",
    "        input=message\n",
    "    )\n",
    "    \n",
    "    audio_stream = BytesIO(response.content)\n",
    "    audio = AudioSegment.from_file(audio_stream, format=\"mp3\")\n",
    "\n",
    "    # Create a temporary file in a folder where you have write permissions\n",
    "    with tempfile.NamedTemporaryFile(suffix=\".wav\", delete=False, dir=os.path.expanduser(\"~/Documents\")) as temp_audio_file:\n",
    "        temp_file_name = temp_audio_file.name\n",
    "        audio.export(temp_file_name, format=\"wav\")\n",
    "    \n",
    "    # Load and play audio using simpleaudio\n",
    "    wave_obj = sa.WaveObject.from_wave_file(temp_file_name)\n",
    "    play_obj = wave_obj.play()\n",
    "    play_obj.wait_done()  # Wait for playback to finish\n",
    "\n",
    "    # Clean up the temporary file afterward\n",
    "    os.remove(temp_file_name)\n",
    "    \n",
    "talker(\"Well hi there\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7986176b-cd04-495f-a47f-e057b0e462ed",
   "metadata": {},
   "source": [
    "## PC Users - if none of those 4 variations worked!\n",
    "\n",
    "Please get in touch with me. I'm sorry this is causing problems! We'll figure it out.\n",
    "\n",
    "Alternatively: playing audio from your PC isn't super-critical for this course, and you can feel free to focus on image generation and skip audio for now, or come back to it later."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1d48876d-c4fa-46a8-a04f-f9fadf61fb0d",
   "metadata": {},
   "source": [
    "# Our Agent Framework\n",
    "\n",
    "The term 'Agentic AI' and Agentization is an umbrella term that refers to a number of techniques, such as:\n",
    "\n",
    "1. Breaking a complex problem into smaller steps, with multiple LLMs carrying out specialized tasks\n",
    "2. The ability for LLMs to use Tools to give them additional capabilities\n",
    "3. The 'Agent Environment' which allows Agents to collaborate\n",
    "4. An LLM can act as the Planner, dividing bigger tasks into smaller ones for the specialists\n",
    "5. The concept of an Agent having autonomy / agency, beyond just responding to a prompt - such as Memory\n",
    "\n",
    "We're showing 1 and 2 here, and to a lesser extent 3 and 5. In week 8 we will do the lot!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ba820c95-02f5-499e-8f3c-8727ee0a6c0c",
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(history):\n",
    "    messages = [{\"role\": \"system\", \"content\": system_message}] + history\n",
    "    response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
    "    image = None\n",
    "    \n",
    "    if response.choices[0].finish_reason==\"tool_calls\":\n",
    "        message = response.choices[0].message\n",
    "        response, city = handle_tool_call(message)\n",
    "        messages.append(message)\n",
    "        messages.append(response)\n",
    "        image = artist(city)\n",
    "        response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
    "        \n",
    "    reply = response.choices[0].message.content\n",
    "    history += [{\"role\":\"assistant\", \"content\":reply}]\n",
    "\n",
    "    # Comment out or delete the next line if you'd rather skip Audio for now..\n",
    "    talker(reply)\n",
    "    \n",
    "    return history, image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f38d0d27-33bf-4992-a2e5-5dbed973cde7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# More involved Gradio code as we're not using the preset Chat interface!\n",
    "# Passing in inbrowser=True in the last line will cause a Gradio window to pop up immediately.\n",
    "\n",
    "with gr.Blocks() as ui:\n",
    "    with gr.Row():\n",
    "        chatbot = gr.Chatbot(height=500, type=\"messages\")\n",
    "        image_output = gr.Image(height=500)\n",
    "    with gr.Row():\n",
    "        entry = gr.Textbox(label=\"Chat with our AI Assistant:\")\n",
    "    with gr.Row():\n",
    "        clear = gr.Button(\"Clear\")\n",
    "\n",
    "    def do_entry(message, history):\n",
    "        history += [{\"role\":\"user\", \"content\":message}]\n",
    "        return \"\", history\n",
    "\n",
    "    entry.submit(do_entry, inputs=[entry, chatbot], outputs=[entry, chatbot]).then(\n",
    "        chat, inputs=chatbot, outputs=[chatbot, image_output]\n",
    "    )\n",
    "    clear.click(lambda: None, inputs=None, outputs=chatbot, queue=False)\n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "226643d2-73e4-4252-935d-86b8019e278a",
   "metadata": {},
   "source": [
    "# Exercises and Business Applications\n",
    "\n",
    "Add in more tools - perhaps to simulate actually booking a flight. A student has done this and provided their example in the community contributions folder.\n",
    "\n",
    "Next: take this and apply it to your business. Make a multi-modal AI assistant with tools that could carry out an activity for your work. A customer support assistant? New employee onboarding assistant? So many possibilities! Also, see the week2 end of week Exercise in the separate Notebook."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7e795560-1867-42db-a256-a23b844e6fbe",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../thankyou.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#090;\">I have a special request for you</h2>\n",
    "            <span style=\"color:#090;\">\n",
    "                My editor tells me that it makes a HUGE difference when students rate this course on Udemy - it's one of the main ways that Udemy decides whether to show it to others. If you're able to take a minute to rate this, I'd be so very grateful! And regardless - always please reach out to me at [email protected] if I can help at any point.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}