File size: 7,902 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ddfa9ae6-69fe-444a-b994-8c4c5970a7ec",
   "metadata": {},
   "source": [
    "# Project - Airline AI Assistant\n",
    "\n",
    "We'll now bring together what we've learned to make an AI Customer Support assistant for an Airline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8b50bbe2-c0b1-49c3-9a5c-1ba7efa2bcb4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import json\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "747e8786-9da8-4342-b6c9-f5f69c2e22ae",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialization\n",
    "\n",
    "load_dotenv(override=True)\n",
    "\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")\n",
    "    \n",
    "MODEL = \"gpt-4o-mini\"\n",
    "openai = OpenAI()\n",
    "\n",
    "# As an alternative, if you'd like to use Ollama instead of OpenAI\n",
    "# Check that Ollama is running for you locally (see week1/day2 exercise) then uncomment these next 2 lines\n",
    "# MODEL = \"llama3.2\"\n",
    "# openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0a521d84-d07c-49ab-a0df-d6451499ed97",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_message = \"You are a helpful assistant for an Airline called FlightAI. \"\n",
    "system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n",
    "system_message += \"Always be accurate. If you don't know the answer, say so.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "61a2a15d-b559-4844-b377-6bd5cb4949f6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n",
    "\n",
    "def chat(message, history):\n",
    "    messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
    "    return response.choices[0].message.content\n",
    "\n",
    "gr.ChatInterface(fn=chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "36bedabf-a0a7-4985-ad8e-07ed6a55a3a4",
   "metadata": {},
   "source": [
    "## Tools\n",
    "\n",
    "Tools are an incredibly powerful feature provided by the frontier LLMs.\n",
    "\n",
    "With tools, you can write a function, and have the LLM call that function as part of its response.\n",
    "\n",
    "Sounds almost spooky.. we're giving it the power to run code on our machine?\n",
    "\n",
    "Well, kinda."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0696acb1-0b05-4dc2-80d5-771be04f1fb2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's start by making a useful function\n",
    "\n",
    "ticket_prices = {\"london\": \"$799\", \"paris\": \"$899\", \"tokyo\": \"$1400\", \"berlin\": \"$499\"}\n",
    "\n",
    "def get_ticket_price(destination_city):\n",
    "    print(f\"Tool get_ticket_price called for {destination_city}\")\n",
    "    city = destination_city.lower()\n",
    "    return ticket_prices.get(city, \"Unknown\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "80ca4e09-6287-4d3f-997d-fa6afbcf6c85",
   "metadata": {},
   "outputs": [],
   "source": [
    "get_ticket_price(\"Berlin\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4afceded-7178-4c05-8fa6-9f2085e6a344",
   "metadata": {},
   "outputs": [],
   "source": [
    "# There's a particular dictionary structure that's required to describe our function:\n",
    "\n",
    "price_function = {\n",
    "    \"name\": \"get_ticket_price\",\n",
    "    \"description\": \"Get the price of a return ticket to the destination city. Call this whenever you need to know the ticket price, for example when a customer asks 'How much is a ticket to this city'\",\n",
    "    \"parameters\": {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"destination_city\": {\n",
    "                \"type\": \"string\",\n",
    "                \"description\": \"The city that the customer wants to travel to\",\n",
    "            },\n",
    "        },\n",
    "        \"required\": [\"destination_city\"],\n",
    "        \"additionalProperties\": False\n",
    "    }\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bdca8679-935f-4e7f-97e6-e71a4d4f228c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# And this is included in a list of tools:\n",
    "\n",
    "tools = [{\"type\": \"function\", \"function\": price_function}]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c3d3554f-b4e3-4ce7-af6f-68faa6dd2340",
   "metadata": {},
   "source": [
    "## Getting OpenAI to use our Tool\n",
    "\n",
    "There's some fiddly stuff to allow OpenAI \"to call our tool\"\n",
    "\n",
    "What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n",
    "\n",
    "Here's how the new chat function looks:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ce9b0744-9c78-408d-b9df-9f6fd9ed78cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history):\n",
    "    messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
    "\n",
    "    if response.choices[0].finish_reason==\"tool_calls\":\n",
    "        message = response.choices[0].message\n",
    "        response, city = handle_tool_call(message)\n",
    "        messages.append(message)\n",
    "        messages.append(response)\n",
    "        response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
    "    \n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b0992986-ea09-4912-a076-8e5603ee631f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# We have to write that function handle_tool_call:\n",
    "\n",
    "def handle_tool_call(message):\n",
    "    tool_call = message.tool_calls[0]\n",
    "    arguments = json.loads(tool_call.function.arguments)\n",
    "    city = arguments.get('destination_city')\n",
    "    price = get_ticket_price(city)\n",
    "    response = {\n",
    "        \"role\": \"tool\",\n",
    "        \"content\": json.dumps({\"destination_city\": city,\"price\": price}),\n",
    "        \"tool_call_id\": tool_call.id\n",
    "    }\n",
    "    return response, city"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4be8a71-b19e-4c2f-80df-f59ff2661f14",
   "metadata": {},
   "outputs": [],
   "source": [
    "gr.ChatInterface(fn=chat, type=\"messages\").launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}