File size: 8,261 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "5e6b6966-8689-4e2c-8607-a1c5d948296c",
   "metadata": {},
   "source": [
    "### With this interface you can ask a question and get an answer from the GPT, Claude and Gemini"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "id": "c44c5494-950d-4d2f-8d4f-b87b57c5b330",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import requests\n",
    "from bs4 import BeautifulSoup\n",
    "from typing import List\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import google.generativeai\n",
    "import anthropic\n",
    "import time"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d1715421-cead-400b-99af-986388a97aff",
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr # oh yeah!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "337d5dfc-0181-4e3b-8ab9-e78e0c3f657b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "OpenAI API Key exists and begins sk-proj-\n",
      "Anthropic API Key exists and begins sk-ant-\n",
      "Google API Key exists and begins AIzaSyAJ\n"
     ]
    }
   ],
   "source": [
    "# Load environment variables in a file called .env\n",
    "# Print the key prefixes to help with any debugging\n",
    "\n",
    "load_dotenv()\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
    "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")\n",
    "    \n",
    "if anthropic_api_key:\n",
    "    print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
    "else:\n",
    "    print(\"Anthropic API Key not set\")\n",
    "\n",
    "if google_api_key:\n",
    "    print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"Google API Key not set\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "22586021-1795-4929-8079-63f5bb4edd4c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Connect to OpenAI, Anthropic and Google; comment out the Claude or Google lines if you're not using them\n",
    "\n",
    "openai = OpenAI()\n",
    "\n",
    "claude = anthropic.Anthropic()\n",
    "\n",
    "google.generativeai.configure()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "b16e6021-6dc4-4397-985a-6679d6c8ffd5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A generic system message - no more snarky adversarial AIs!\n",
    "\n",
    "system_message = \"You are a helpful assistant\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "88c04ebf-0671-4fea-95c9-bc1565d4bb4f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's create a call that streams back results\n",
    "# If you'd like a refresher on Generators (the \"yield\" keyword),\n",
    "# Please take a look at the Intermediate Python notebook in week1 folder.\n",
    "\n",
    "def stream_gpt(prompt):\n",
    "    messages = [\n",
    "        {\"role\": \"system\", \"content\": system_message},\n",
    "        {\"role\": \"user\", \"content\": prompt}\n",
    "      ]\n",
    "    stream = openai.chat.completions.create(\n",
    "        model='gpt-4o-mini',\n",
    "        messages=messages,\n",
    "        stream=True\n",
    "    )\n",
    "    result = \"\"\n",
    "    for chunk in stream:\n",
    "        result += chunk.choices[0].delta.content or \"\"\n",
    "        yield result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "bbc8e930-ba2a-4194-8f7c-044659150626",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_claude(prompt):\n",
    "    result = claude.messages.stream(\n",
    "        model=\"claude-3-haiku-20240307\",\n",
    "        max_tokens=1000,\n",
    "        temperature=0.7,\n",
    "        system=system_message,\n",
    "        messages=[\n",
    "            {\"role\": \"user\", \"content\": prompt},\n",
    "        ],\n",
    "    )\n",
    "    response = \"\"\n",
    "    with result as stream:\n",
    "        for text in stream.text_stream:\n",
    "            response += text or \"\"\n",
    "            yield response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "5e228aff-16d5-4141-bd04-ed9940ef7b3b",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_gemini(prompt):\n",
    "    gemini = google.generativeai.GenerativeModel(\n",
    "    model_name='gemini-2.0-flash-exp',\n",
    "    system_instruction=system_message\n",
    "    )\n",
    "    result = \"\"\n",
    "    for response in gemini.generate_content(prompt, stream=True):\n",
    "        result += response.text or \"\"\n",
    "        yield result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 92,
   "id": "db99aaf1-fe0a-4e79-9057-8599d1ca0149",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_models(prompt):\n",
    "    response_gpt = \"\"\n",
    "    response_claude =  \"\"\n",
    "    response_gemini =  \"\"\n",
    "    for gpt in stream_gpt(prompt):\n",
    "        response_gpt = gpt\n",
    "        yield response_gpt, response_claude, response_gemini\n",
    "    for claude in stream_claude(prompt):\n",
    "        response_claude = claude\n",
    "        yield response_gpt, response_claude, response_gemini\n",
    "    for gemini in stream_gemini(prompt):\n",
    "        response_gemini = gemini\n",
    "        yield response_gpt, response_claude, response_gemini"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 113,
   "id": "3377f2fb-55f8-45cb-b713-d99d44748dad",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7919\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7919/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 113,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Gradio interface\n",
    "with gr.Blocks() as view:\n",
    "    user_input = gr.Textbox(label=\"What models can help with?\", placeholder=\"Type your question here\")\n",
    "    ask_button = gr.Button(\"Ask\")\n",
    "    with gr.Row():\n",
    "        with gr.Column():\n",
    "            gr.HTML(value=\"<b>GPT response:</b>\") \n",
    "            gcp_stream = gr.Markdown()\n",
    "        with gr.Column():\n",
    "            gr.HTML(value=\"<b>Claude response:</b>\") \n",
    "            claude_stream = gr.Markdown()\n",
    "        with gr.Column():\n",
    "            gr.HTML(value=\"<b>Gemine response:</b>\") \n",
    "            gemini_stream = gr.Markdown()\n",
    "\n",
    "    ask_button.click(\n",
    "        fn=stream_models,  # Function that yields multiple outputs\n",
    "        inputs=user_input,\n",
    "        outputs=[gcp_stream, claude_stream, gemini_stream]  # Connect to multiple outputs\n",
    "    )\n",
    "\n",
    "view.launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}