File size: 17,583 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "8b0e11f2-9ea4-48c2-b8d2-d0a4ba967827",
   "metadata": {},
   "source": [
    "# Gradio Day!\n",
    "\n",
    "Today we will build User Interfaces using the outrageously simple Gradio framework.\n",
    "\n",
    "Prepare for joy!\n",
    "\n",
    "Please note: your Gradio screens may appear in 'dark mode' or 'light mode' depending on your computer settings."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c44c5494-950d-4d2f-8d4f-b87b57c5b330",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import requests\n",
    "from bs4 import BeautifulSoup\n",
    "from typing import List\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import google.generativeai\n",
    "import anthropic"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d1715421-cead-400b-99af-986388a97aff",
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr # oh yeah!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "337d5dfc-0181-4e3b-8ab9-e78e0c3f657b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "# Print the key prefixes to help with any debugging\n",
    "\n",
    "load_dotenv()\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
    "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")\n",
    "    \n",
    "if anthropic_api_key:\n",
    "    print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
    "else:\n",
    "    print(\"Anthropic API Key not set\")\n",
    "\n",
    "if google_api_key:\n",
    "    print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"Google API Key not set\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "22586021-1795-4929-8079-63f5bb4edd4c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Connect to OpenAI, Anthropic and Google; comment out the Claude or Google lines if you're not using them\n",
    "\n",
    "openai = OpenAI()\n",
    "\n",
    "claude = anthropic.Anthropic()\n",
    "\n",
    "google.generativeai.configure()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b16e6021-6dc4-4397-985a-6679d6c8ffd5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A generic system message - no more snarky adversarial AIs!\n",
    "\n",
    "system_message = \"You are a helpful assistant\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "02ef9b69-ef31-427d-86d0-b8c799e1c1b1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's wrap a call to GPT-4o-mini in a simple function\n",
    "\n",
    "def message_gpt(prompt):\n",
    "    messages = [\n",
    "        {\"role\": \"system\", \"content\": system_message},\n",
    "        {\"role\": \"user\", \"content\": prompt}\n",
    "      ]\n",
    "    completion = openai.chat.completions.create(\n",
    "        model='gpt-4o-mini',\n",
    "        messages=messages,\n",
    "    )\n",
    "    return completion.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aef7d314-2b13-436b-b02d-8de3b72b193f",
   "metadata": {},
   "outputs": [],
   "source": [
    "message_gpt(\"What is today's date?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f94013d1-4f27-4329-97e8-8c58db93636a",
   "metadata": {},
   "source": [
    "## User Interface time!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bc664b7a-c01d-4fea-a1de-ae22cdd5141a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# here's a simple function\n",
    "\n",
    "def shout(text):\n",
    "    print(f\"Shout has been called with input {text}\")\n",
    "    return text.upper()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "083ea451-d3a0-4d13-b599-93ed49b975e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "shout(\"hello\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08f1f15a-122e-4502-b112-6ee2817dda32",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The simplicty of gradio. This might appear in \"light mode\" - I'll show you how to make this in dark mode later.\n",
    "\n",
    "gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\").launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c9a359a4-685c-4c99-891c-bb4d1cb7f426",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Adding share=True means that it can be accessed publically\n",
    "# A more permanent hosting is available using a platform called Spaces from HuggingFace, which we will touch on next week\n",
    "# NOTE: Some Anti-virus software and Corporate Firewalls might not like you using share=True. If you're at work on on a work network, I suggest skip this test.\n",
    "\n",
    "gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\", flagging_mode=\"never\").launch(share=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cd87533a-ff3a-4188-8998-5bedd5ba2da3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Adding inbrowser=True opens up a new browser window automatically\n",
    "\n",
    "gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\", flagging_mode=\"never\").launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b42ec007-0314-48bf-84a4-a65943649215",
   "metadata": {},
   "source": [
    "## Forcing dark mode\n",
    "\n",
    "Gradio appears in light mode or dark mode depending on the settings of the browser and computer. There is a way to force gradio to appear in dark mode, but Gradio recommends against this as it should be a user preference (particularly for accessibility reasons). But if you wish to force dark mode for your screens, below is how to do it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8129afa-532b-4b15-b93c-aa9cca23a546",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define this variable and then pass js=force_dark_mode when creating the Interface\n",
    "\n",
    "force_dark_mode = \"\"\"\n",
    "function refresh() {\n",
    "    const url = new URL(window.location);\n",
    "    if (url.searchParams.get('__theme') !== 'dark') {\n",
    "        url.searchParams.set('__theme', 'dark');\n",
    "        window.location.href = url.href;\n",
    "    }\n",
    "}\n",
    "\"\"\"\n",
    "gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\", flagging_mode=\"never\", js=force_dark_mode).launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3cc67b26-dd5f-406d-88f6-2306ee2950c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Inputs and Outputs\n",
    "\n",
    "view = gr.Interface(\n",
    "    fn=shout,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\", lines=6)],\n",
    "    outputs=[gr.Textbox(label=\"Response:\", lines=8)],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f235288e-63a2-4341-935b-1441f9be969b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now - changing the function from \"shout\" to \"message_gpt\"\n",
    "\n",
    "view = gr.Interface(\n",
    "    fn=message_gpt,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\", lines=6)],\n",
    "    outputs=[gr.Textbox(label=\"Response:\", lines=8)],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "af9a3262-e626-4e4b-80b0-aca152405e63",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's use Markdown\n",
    "# Are you wondering why it makes any difference to set system_message when it's not referred to in the code below it?\n",
    "# I'm taking advantage of system_message being a global variable, used back in the message_gpt function (go take a look)\n",
    "# Not a great software engineering practice, but quite sommon during Jupyter Lab R&D!\n",
    "\n",
    "system_message = \"You are a helpful assistant that responds in markdown\"\n",
    "\n",
    "view = gr.Interface(\n",
    "    fn=message_gpt,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\")],\n",
    "    outputs=[gr.Markdown(label=\"Response:\")],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "88c04ebf-0671-4fea-95c9-bc1565d4bb4f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's create a call that streams back results\n",
    "# If you'd like a refresher on Generators (the \"yield\" keyword),\n",
    "# Please take a look at the Intermediate Python notebook in week1 folder.\n",
    "\n",
    "def stream_gpt(prompt):\n",
    "    messages = [\n",
    "        {\"role\": \"system\", \"content\": system_message},\n",
    "        {\"role\": \"user\", \"content\": prompt}\n",
    "      ]\n",
    "    stream = openai.chat.completions.create(\n",
    "        model='gpt-4o-mini',\n",
    "        messages=messages,\n",
    "        stream=True\n",
    "    )\n",
    "    result = \"\"\n",
    "    for chunk in stream:\n",
    "        result += chunk.choices[0].delta.content or \"\"\n",
    "        yield result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0bb1f789-ff11-4cba-ac67-11b815e29d09",
   "metadata": {},
   "outputs": [],
   "source": [
    "view = gr.Interface(\n",
    "    fn=stream_gpt,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\")],\n",
    "    outputs=[gr.Markdown(label=\"Response:\")],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bbc8e930-ba2a-4194-8f7c-044659150626",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_claude(prompt):\n",
    "    result = claude.messages.stream(\n",
    "        model=\"claude-3-haiku-20240307\",\n",
    "        max_tokens=1000,\n",
    "        temperature=0.7,\n",
    "        system=system_message,\n",
    "        messages=[\n",
    "            {\"role\": \"user\", \"content\": prompt},\n",
    "        ],\n",
    "    )\n",
    "    response = \"\"\n",
    "    with result as stream:\n",
    "        for text in stream.text_stream:\n",
    "            response += text or \"\"\n",
    "            yield response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a0066ffd-196e-4eaf-ad1e-d492958b62af",
   "metadata": {},
   "outputs": [],
   "source": [
    "view = gr.Interface(\n",
    "    fn=stream_claude,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\")],\n",
    "    outputs=[gr.Markdown(label=\"Response:\")],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bc5a70b9-2afe-4a7c-9bed-2429229e021b",
   "metadata": {},
   "source": [
    "## Minor improvement\n",
    "\n",
    "I've made a small improvement to this code.\n",
    "\n",
    "Previously, it had these lines:\n",
    "\n",
    "```\n",
    "for chunk in result:\n",
    "  yield chunk\n",
    "```\n",
    "\n",
    "There's actually a more elegant way to achieve this (which Python people might call more 'Pythonic'):\n",
    "\n",
    "`yield from result`\n",
    "\n",
    "I cover this in more detail in the Intermediate Python notebook in the week1 folder - take a look if you'd like more."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0087623a-4e31-470b-b2e6-d8d16fc7bcf5",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_model(prompt, model):\n",
    "    if model==\"GPT\":\n",
    "        result = stream_gpt(prompt)\n",
    "    elif model==\"Claude\":\n",
    "        result = stream_claude(prompt)\n",
    "    else:\n",
    "        raise ValueError(\"Unknown model\")\n",
    "    yield from result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8d8ce810-997c-4b6a-bc4f-1fc847ac8855",
   "metadata": {},
   "outputs": [],
   "source": [
    "view = gr.Interface(\n",
    "    fn=stream_model,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\"), gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\", value=\"Claude\")],\n",
    "    outputs=[gr.Markdown(label=\"Response:\")],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d933865b-654c-4b92-aa45-cf389f1eda3d",
   "metadata": {},
   "source": [
    "# Building a company brochure generator\n",
    "\n",
    "Now you know how - it's simple!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "92d7c49b-2e0e-45b3-92ce-93ca9f962ef4",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../important.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#900;\">Before you read the next few cells</h2>\n",
    "            <span style=\"color:#900;\">\n",
    "                Try to do this yourself - go back to the company brochure in week1, day5 and add a Gradio UI to the end. Then come and look at the solution.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1626eb2e-eee8-4183-bda5-1591b58ae3cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "\n",
    "class Website:\n",
    "    url: str\n",
    "    title: str\n",
    "    text: str\n",
    "\n",
    "    def __init__(self, url):\n",
    "        self.url = url\n",
    "        response = requests.get(url)\n",
    "        self.body = response.content\n",
    "        soup = BeautifulSoup(self.body, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "            irrelevant.decompose()\n",
    "        self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
    "\n",
    "    def get_contents(self):\n",
    "        return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c701ec17-ecd5-4000-9f68-34634c8ed49d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# With massive thanks to Bill G. who noticed that a prior version of this had a bug! Now fixed.\n",
    "\n",
    "system_message = \"You are an assistant that analyzes the contents of a company website landing page \\\n",
    "and creates a short brochure about the company for prospective customers, investors and recruits. Respond in markdown.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5def90e0-4343-4f58-9d4a-0e36e445efa4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_brochure(company_name, url, model, tone):\n",
    "    prompt = f\"Please generate a company brochure for {company_name}. Write the brochure in the following tone: {tone}.Here is their landing page:\\n\"\n",
    "    prompt += Website(url).get_contents()\n",
    "    if model==\"GPT\":\n",
    "        result = stream_gpt(prompt)\n",
    "    elif model==\"Claude\":\n",
    "        result = stream_claude(prompt)\n",
    "    else:\n",
    "        raise ValueError(\"Unknown model\")\n",
    "    yield from result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "66399365-5d67-4984-9d47-93ed26c0bd3d",
   "metadata": {},
   "outputs": [],
   "source": [
    "view = gr.Interface(\n",
    "    fn=stream_brochure,\n",
    "    inputs=[\n",
    "        gr.Textbox(label=\"Company name:\"),\n",
    "        gr.Textbox(label=\"Landing page URL including http:// or https://\"),\n",
    "        gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\"),\n",
    "        gr.Dropdown([\"Formal\", \"Casual\", \"Academic\", \"Funny\", \"Snarky\"], label=\"Select tone\", value=\"Formal\"),],\n",
    "    outputs=[gr.Markdown(label=\"Brochure:\")],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ede97ca3-a0f8-4f6e-be17-d1de7fef9cc0",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}