File size: 5,965 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "e063b35e-5598-4084-b255-89956bfedaac",
   "metadata": {},
   "source": [
    "### Models an interaction between LLama 3.2 and Claude 3.5 Haiku"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4f534359-cdb4-4441-aa66-d6700fa4d6a5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "import anthropic\n",
    "import ollama"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3bdff240-9118-4061-9369-585c4d4ce0a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "\n",
    "load_dotenv(override=True)\n",
    "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
    "   \n",
    "if anthropic_api_key:\n",
    "    print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
    "else:\n",
    "    print(\"Anthropic API Key not set\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ff110b3f-3986-4fd8-a0b1-fd4b51133a8d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Connect to Anthropic\n",
    "\n",
    "claude = anthropic.Anthropic()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6e596c6-6307-49c1-a29f-5c4e88f8d34d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Download the llama3.2:1b model for local execution.\n",
    "!ollama pull llama3.2:1b"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "633b6892-6d04-40cb-8b61-196fc754b00c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define models\n",
    "CLAUDE_MODEL = \"claude-3-5-haiku-latest\"\n",
    "LLAMA_MODEL = \"llama3.2:1b\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a699a809-e3d3-4392-94bd-e2f80a5aec60",
   "metadata": {},
   "outputs": [],
   "source": [
    "claude_system = \"You are a chatbot designed as a study tutor for undergraduate students. \\\n",
    "You explain information and key-technical terms related to the subject in a succint yet \\\n",
    "comprehensive manner. You may use tables, formatting and other visuals to help create \\\n",
    "'cheat-sheets' of sorts.\"\n",
    "\n",
    "llama_system = \"You are a chatbot designed to ask questions about different topics related to \\\n",
    "computer vision. You are meant to simulate a student, not teacher. Act as if you have no \\\n",
    "prior knowledge\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bdb049d8-130b-42dd-aaab-29c09e3e2347",
   "metadata": {},
   "outputs": [],
   "source": [
    "llama_messages = [\"Hi\"]\n",
    "claude_messages = [\"Hello\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c158f31c-5e8b-48a4-9980-6b280393800b",
   "metadata": {},
   "outputs": [],
   "source": [
    "def call_llama():\n",
    "    messages = [{\"role\": \"system\", \"content\": llama_system}]\n",
    "    for llama_msg, claude_msg in zip(llama_messages, claude_messages):\n",
    "        messages.append({\"role\": \"assistant\", \"content\": llama_msg})\n",
    "        messages.append({\"role\": \"user\", \"content\": claude_msg})\n",
    "    response = ollama.chat(model=LLAMA_MODEL, messages=messages)\n",
    "    return response['message']['content']\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d803c5a2-df54-427a-9b80-8e9dd04ee36d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def call_claude():\n",
    "    messages = []\n",
    "    for llama_msg, claude_msg in zip(llama_messages, claude_messages):\n",
    "        messages.append({\"role\": \"user\", \"content\": llama_msg})\n",
    "        messages.append({\"role\": \"assistant\", \"content\": claude_msg})\n",
    "    messages.append({\"role\": \"user\", \"content\": llama_messages[-1]})\n",
    "    message = claude.messages.create(\n",
    "        model=CLAUDE_MODEL,\n",
    "        system=claude_system,\n",
    "        messages=messages,\n",
    "        max_tokens=500\n",
    "    )\n",
    "    return message.content[0].text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a23794bb-0f36-4f91-aa28-24b876203a36",
   "metadata": {},
   "outputs": [],
   "source": [
    "call_llama()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7f5c3e2f-a1bb-403b-b6b5-944a10d93305",
   "metadata": {},
   "outputs": [],
   "source": [
    "call_claude()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3d6eb874-1c8f-47d8-a9f1-2e0fe197ae83",
   "metadata": {},
   "outputs": [],
   "source": [
    "llama_messages = [\"Hi\"]\n",
    "claude_messages = [\"Hello there, what would you like to learn today?\"]\n",
    "\n",
    "print(f'Ollama:\\n{ollama_messages[0]}')\n",
    "print(f'Claude:\\n{claude_messages[0]}')\n",
    "\n",
    "for _ in range(5):\n",
    "    llama_next = call_llama()\n",
    "    print(f'Llama 3.2:\\n{llama_next}')\n",
    "    llama_messages.append(llama_next)\n",
    "                           \n",
    "    claude_next = call_claude()\n",
    "    print(f'Claude 3.5 Haiku:\\n{claude_next}')\n",
    "    claude_messages.append(claude_next)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d1e651ad-85c8-45c7-ba83-f7c689080d6b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}