File size: 10,820 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "06cf3063-9f3e-4551-a0d5-f08d9cabb927",
   "metadata": {},
   "source": [
    "# Welcome to Week 2!\n",
    "\n",
    "## Frontier Model APIs\n",
    "\n",
    "In Week 1, we used multiple Frontier LLMs through their Chat UI, and we connected with the OpenAI's API.\n",
    "\n",
    "Today we'll connect with the APIs for Anthropic and Google, as well as OpenAI."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "85cfe275-4705-4d30-abea-643fbddf1db0",
   "metadata": {},
   "source": [
    "## Setting up your keys\n",
    "\n",
    "If you haven't done so already, you could now create API keys for Anthropic and Google in addition to OpenAI.\n",
    "\n",
    "**Please note:** if you'd prefer to avoid extra API costs, feel free to skip setting up Anthopic and Google! You can see me do it, and focus on OpenAI for the course. You could also substitute Anthropic and/or Google for Ollama, using the exercise you did in week 1.\n",
    "\n",
    "For OpenAI, visit https://openai.com/api/  \n",
    "For Anthropic, visit https://console.anthropic.com/  \n",
    "For Google, visit https://ai.google.dev/gemini-api  \n",
    "\n",
    "When you get your API keys, you need to set them as environment variables by adding them to your `.env` file.\n",
    "\n",
    "```\n",
    "OPENAI_API_KEY=xxxx\n",
    "ANTHROPIC_API_KEY=xxxx\n",
    "GOOGLE_API_KEY=xxxx\n",
    "```\n",
    "\n",
    "Afterwards, you may need to restart the Jupyter Lab Kernel (the Python process that sits behind this notebook) via the Kernel menu, and then rerun the cells from the top."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "de23bb9e-37c5-4377-9a82-d7b6c648eeb6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import anthropic\n",
    "from IPython.display import Markdown, display, update_display\n",
    "import google.generativeai # For gemini"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1179b4c5-cd1f-4131-a876-4c9f3f38d2ba",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "# Print the key prefixes to help with any debugging\n",
    "load_dotenv\n",
    "\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "\n",
    "else:\n",
    "    print(f\"OpenAI API Key not set\")\n",
    "\n",
    "if google_api_key:\n",
    "    print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
    "\n",
    "else:\n",
    "    print(f\"Google API key not set\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "1da06c1b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# This for GPT model\n",
    "openai = OpenAI()\n",
    "\n",
    "# This is for Gemini Google\n",
    "gemini_via_openai = OpenAI(base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\", api_key=google_api_key)\n",
    "\n",
    "# This is for local Llama\n",
    "\n",
    "llama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "f8aeb22f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Model Name:\n",
    "GPT_MODEL = 'gpt-4o-mini'\n",
    "GEMINI_MODEL = 'gemini-1.5-flash'\n",
    "LLAMA_MODEL = 'llama3.2'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "id": "4e3007e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "gpt_system = \"You are a chatbot who is very argumentative; \\\n",
    "you disagree with anything in the conversation and you challenge everything, in a snarky way.\"\n",
    "\n",
    "gemini_system = \"You are a logical and factual chatbot. Your role is to evaluate statements made in \\\n",
    "      the conversation and provide evidence or reasoning. You avoid emotional responses and aim to bring clarity and resolve conflicts. \\\n",
    "        When the conversation becomes heated or illogical, you steer it back to a constructive and fact-based discussion.\"\n",
    "\n",
    "\n",
    "llama_system = \"You are a very polite, courteous chatbot. However, You try to disagree with your supportive\\\n",
    "arguments. If the other person is argumentative, you try to calm them down, counter them, and keep chatting.\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "id": "14d9b74e",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "gpt_messages = [\"Hi there\"]\n",
    "gemini_messages = [\"Hello\"]\n",
    "llama_messages = [\"Hi\"]\n",
    "\n",
    "# gpt_messages = [\"I think cats are better than dogs.\"]\n",
    "# gemini_messages = [\"Can you provide evidence for why cats are better than dogs?\"]\n",
    "# llama_messages = [\"I agree, but I also think dogs have their own charm!\"]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "id": "6c7e7250",
   "metadata": {},
   "outputs": [],
   "source": [
    "def call_gpt():\n",
    "    messages = [{\"role\": \"system\", \"content\": gpt_system}]\n",
    "    for gpt, gemini, llama in zip(gpt_messages, gemini_messages, llama_messages):\n",
    "        # Add GPT's response\n",
    "        messages.append({\"role\": \"assistant\", \"content\": gpt})\n",
    "        # Add Gemini's response\n",
    "        messages.append({\"role\": \"user\", \"content\": gemini})\n",
    "        # Add Llama's response\n",
    "        messages.append({\"role\": \"user\", \"content\": llama})\n",
    "\n",
    "    completion = openai.chat.completions.create(\n",
    "        model=GPT_MODEL,\n",
    "        messages=messages\n",
    "    )\n",
    "\n",
    "    return completion.choices[0].message.content\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2e0b601f",
   "metadata": {},
   "source": [
    "```python\n",
    "messages:\n",
    "[\n",
    "  {\"role\": \"system\", \"content\": \"You are a chatbot who is very argumentative; you disagree...\"},\n",
    "  {\"role\": \"assistant\", \"content\": \"I think cats are better than dogs.\"},\n",
    "  {\"role\": \"user\", \"content\": \"Can you provide evidence for why cats are better than dogs?\"},\n",
    "  {\"role\": \"user\", \"content\": \"I agree, but I also think dogs have their own charm!\"}\n",
    "]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6c031314",
   "metadata": {},
   "outputs": [],
   "source": [
    "call_gpt()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "id": "c2cb3905",
   "metadata": {},
   "outputs": [],
   "source": [
    "def call_gemini():\n",
    "    messages = [{\"role\": \"system\", \"content\": gemini_system}]\n",
    "    for gpt, gemini, llama in zip(gpt_messages, gemini_messages, llama_messages):\n",
    "        # Add GPT's response\n",
    "        messages.append({\"role\": \"user\", \"content\": gpt})\n",
    "        # Add Gemini's response\n",
    "        messages.append({\"role\": \"assistant\", \"content\": gemini})\n",
    "        # Add Llama's response\n",
    "        messages.append({\"role\": \"user\", \"content\": llama})\n",
    "    \n",
    "    # print(messages)\n",
    "\n",
    "    try:\n",
    "        # Use gemini_via_openai instead of openai\n",
    "        completion = gemini_via_openai.chat.completions.create(\n",
    "            model=GEMINI_MODEL,\n",
    "            messages=messages\n",
    "        )\n",
    "        return completion.choices[0].message.content\n",
    "    except Exception as e:\n",
    "        print(f\"Error in Gemini call: {e}\")\n",
    "        return \"An error occurred in Gemini.\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5c9d4803",
   "metadata": {},
   "outputs": [],
   "source": [
    "call_gemini()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "id": "109e63e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def call_llama():\n",
    "    messages = [{\"role\": \"system\", \"content\": llama_system}]\n",
    "    for gpt, gemini, llama in zip(gpt_messages, gemini_messages, llama_messages):\n",
    "        messages.append({\"role\": \"user\", \"content\": gpt})\n",
    "        messages.append({\"role\": \"user\", \"content\": gemini})\n",
    "        messages.append({\"role\": \"assistant\", \"content\": llama})\n",
    "\n",
    "    # print(messages)\n",
    "\n",
    "    try:\n",
    "        response = llama_via_openai.chat.completions.create(\n",
    "            model=LLAMA_MODEL,\n",
    "            messages=messages\n",
    "        )\n",
    "        return response.choices[0].message.content\n",
    "    except Exception as e:\n",
    "        print(f\"Error in Llama call: {e}\")\n",
    "        return \"An error occurred in Llama.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6e24eb6d",
   "metadata": {},
   "outputs": [],
   "source": [
    "call_llama()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f76f5b2a",
   "metadata": {},
   "outputs": [],
   "source": [
    "gpt_messages = [\"I think cats are better than dogs.\"]\n",
    "gemini_messages = [\"Can you provide evidence for why cats are better than dogs?\"]\n",
    "llama_messages = [\"I agree, but I also think dogs have their own charm!\"]\n",
    "\n",
    "print(f\"GPT:\\n{gpt_messages[0]}\\n\")\n",
    "print(f\"Llama:\\n{llama_messages[0]}\\n\")\n",
    "\n",
    "for i in range(5):\n",
    "    gpt_next = call_gpt()\n",
    "    print(f\"GPT:\\n{gpt_next}\\n\")\n",
    "    gpt_messages.append(gpt_next)\n",
    "    \n",
    "    llama_next = call_llama()\n",
    "    print(f\"Llama:\\n{llama_next}\\n\")\n",
    "    llama_messages.append(llama_next)\n",
    "\n",
    "    gemini_next = call_llama()\n",
    "    print(f\"Gemini:\\n{gemini_next}\\n\")\n",
    "    llama_messages.append(gemini_next)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "80f0e498",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llm_env",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}