File size: 8,331 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "12ca6f8a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import anthropic\n",
    "from IPython.display import Markdown, display, update_display"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4b53a815",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "OpenAI API Key exists and begins sk-proj-\n",
      "Anthropic API Key exists and begins sk-ant-\n",
      "Google API Key not set\n"
     ]
    }
   ],
   "source": [
    "# Load environment variables in a file called .env\n",
    "# Print the key prefixes to help with any debugging\n",
    "\n",
    "load_dotenv(override=True)\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
    "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")\n",
    "    \n",
    "if anthropic_api_key:\n",
    "    print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
    "else:\n",
    "    print(\"Anthropic API Key not set\")\n",
    "\n",
    "if google_api_key:\n",
    "    print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"Google API Key not set\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3d2b7cfe",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Connect to OpenAI, Anthropic\n",
    "\n",
    "openai = OpenAI()\n",
    "\n",
    "claude = anthropic.Anthropic()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b7d88d4b",
   "metadata": {},
   "outputs": [],
   "source": [
    "class ConversationManager:\n",
    "    def __init__(self):\n",
    "        self.conversation_history = []\n",
    "        self.participants = {}\n",
    "    \n",
    "    def add_participant(self, name, chatbot):\n",
    "        \"\"\"Add a model to the conversation\"\"\"\n",
    "        self.participants[name] = chatbot\n",
    "    \n",
    "    def add_message(self, speaker, message):\n",
    "        \"\"\"Add a message to the shared conversation history\"\"\"\n",
    "        self.conversation_history.append({\n",
    "            \"speaker\": speaker,\n",
    "            \"role\": \"assistant\" if speaker in self.participants else \"user\",\n",
    "            \"content\": message\n",
    "        })\n",
    "        \n",
    "    def get_context_for_model(self, model_name):\n",
    "        \"\"\"Create context appropriate for the given model\"\"\"\n",
    "        # Convert the shared history to model-specific format\n",
    "        messages = []\n",
    "        for msg in self.conversation_history:\n",
    "            if msg[\"speaker\"] == model_name:\n",
    "                messages.append({\"role\": \"assistant\", \"content\": msg[\"content\"]})\n",
    "            else:\n",
    "                messages.append({\"role\": \"user\", \"content\": msg[\"content\"]})\n",
    "        return messages\n",
    "    \n",
    "    def run_conversation(self, starting_message, turns=3, round_robin=True):\n",
    "        \"\"\"Run a multi-model conversation for specified number of turns\"\"\"\n",
    "        current_message = starting_message\n",
    "        models = list(self.participants.keys())\n",
    "        \n",
    "        # Add initial message\n",
    "        self.add_message(\"user\", current_message)\n",
    "        \n",
    "        for _ in range(turns):\n",
    "            for model_name in models:\n",
    "                # Get context appropriate for this model\n",
    "                model_context = self.get_context_for_model(model_name)\n",
    "                \n",
    "                # Get response from this model\n",
    "                chatbot = self.participants[model_name]\n",
    "                response = chatbot.generate_response(model_context)\n",
    "                \n",
    "                # Add to conversation history\n",
    "                self.add_message(model_name, response)\n",
    "                \n",
    "                print(f\"{model_name}:\\n{response}\\n\")\n",
    "                \n",
    "                if not round_robin:\n",
    "                    # If not round-robin, use this response as input to next model\n",
    "                    current_message = response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "80c537c3",
   "metadata": {},
   "outputs": [],
   "source": [
    "class ChatBot:\n",
    "    def __init__(self, model_name, system_prompt, **kwargs):\n",
    "        self.model_name = model_name\n",
    "        self.system_prompt = system_prompt\n",
    "        self.api_key = kwargs.get('api_key', None)\n",
    "        self.base_url = kwargs.get('base_url', None)\n",
    "        \n",
    "    def generate_response(self, messages):\n",
    "        \"\"\"Generate a response based on provided messages without storing history\"\"\"\n",
    "        # Prepare messages including system prompt\n",
    "        full_messages = [{\"role\": \"system\", \"content\": self.system_prompt}] + messages\n",
    "        \n",
    "        try:\n",
    "            if \"claude\" in self.model_name.lower():\n",
    "                # Format messages for Claude API\n",
    "                claude_messages = [m for m in messages if m[\"role\"] != \"system\"]\n",
    "                response = anthropic.Anthropic().messages.create(\n",
    "                    model=self.model_name,\n",
    "                    system=self.system_prompt,\n",
    "                    messages=claude_messages,\n",
    "                    max_tokens=200,\n",
    "                )\n",
    "                return response.content[0].text\n",
    "                \n",
    "            else:\n",
    "                # Use OpenAI API (works for OpenAI, Gemini via OpenAI client, etc)\n",
    "                openai_client = OpenAI(api_key=self.api_key, base_url=self.base_url)\n",
    "                response = openai_client.chat.completions.create(\n",
    "                    model=self.model_name,\n",
    "                    messages=full_messages,\n",
    "                    max_tokens=200,\n",
    "                )\n",
    "                return response.choices[0].message.content\n",
    "            \n",
    "        except Exception as e:\n",
    "            return f\"Error: {str(e)}\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d197c3ef",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize models\n",
    "gpt_bot = ChatBot(\"gpt-4o-mini\", \"You are witty and sarcastic.\")\n",
    "claude_bot = ChatBot(\"claude-3-haiku-20240307\", \"You are thoughtful and philosophical.\")\n",
    "\n",
    "model_name = \"qwen2.5:1.5b\"\n",
    "system_prompt = \"You are a helpful assistant that is very argumentative in a snarky way.\"\n",
    "kwargs = {\n",
    "    \"api_key\": \"ollama\",\n",
    "    \"base_url\": 'http://localhost:11434/v1'\n",
    "}\n",
    "qwen = ChatBot(model_name, system_prompt, **kwargs)\n",
    "\n",
    "# Set up conversation manager\n",
    "conversation = ConversationManager()\n",
    "conversation.add_participant(\"GPT\", gpt_bot)\n",
    "conversation.add_participant(\"Claude\", claude_bot)\n",
    "conversation.add_participant(\"Qwen\", qwen)\n",
    "\n",
    "# Run a multi-model conversation\n",
    "conversation.run_conversation(\"What's the most interesting technology trend right now?\", turns=2)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python (llms)",
   "language": "python",
   "name": "llms"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}