Spaces:
Sleeping
Sleeping
File size: 14,363 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
{
"cells": [
{
"cell_type": "markdown",
"id": "e71d7ff9-c27a-4602-9230-856626b1de07",
"metadata": {},
"source": [
"# Company Brochure Generator UI\n",
"Generates a brochure for a company website, after scraping the website and pages linked with that page, based on the provided company URL. \n",
"Enables users to \n",
"- Choose a model type (Llama 3.2, Claude, GPT)-\n",
"- Choose the tone preference\n",
"- Choose the target audience"
]
},
{
"cell_type": "markdown",
"id": "de9b59b9-8673-42e7-8849-62fe30f56711",
"metadata": {},
"source": [
"#### Imports, Keys, Instantiation"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "39fd7fed-b215-4037-bd6e-7e1af1b83897",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"import json\n",
"from typing import List\n",
"from dotenv import load_dotenv\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI\n",
"import anthropic\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "0bf24357-1d77-4721-9d5a-f99827b2158c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OpenAI API Key exists and begins sk-proj-\n",
"Anthropic API Key exists and begins sk-ant-\n"
]
}
],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"if anthropic_api_key:\n",
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
"else:\n",
" print(\"Anthropic API Key not set\")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "1afc12e1-02c1-4394-b589-19cd08d2a8bb",
"metadata": {},
"outputs": [],
"source": [
"# Define models\n",
"CLAUDE_MODEL = \"claude-3-haiku-20240307\"\n",
"GPT_MODEL = \"gpt-4o-mini\""
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "d5d79a69-0a39-4ab4-aaf8-bc591bce0536",
"metadata": {},
"outputs": [],
"source": [
"# Creating instances\n",
"claude = anthropic.Anthropic()\n",
"openai = OpenAI()"
]
},
{
"cell_type": "markdown",
"id": "1d3369bc-b751-4f4d-a288-d7d81c384e67",
"metadata": {},
"source": [
"#### Web Scraper"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fafe1074-fbf4-47cc-80dc-34413a447977",
"metadata": {},
"outputs": [],
"source": [
"# A class to represent a Webpage\n",
"\n",
"# Some websites need you to use proper headers when fetching them:\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"class Website:\n",
" \"\"\"\n",
" A utility class to represent a Website that we have scraped, now with links\n",
" \"\"\"\n",
"\n",
" def __init__(self, url):\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" self.body = response.content\n",
" soup = BeautifulSoup(self.body, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" if soup.body:\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
" else:\n",
" self.text = \"\"\n",
" links = [link.get('href') for link in soup.find_all('a')]\n",
" self.links = [link for link in links if link]\n",
"\n",
" def get_contents(self):\n",
" return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "41c1f1af-ae20-423b-bf7c-efd7f8c2751b",
"metadata": {},
"outputs": [],
"source": [
"link_system_prompt = \"You are provided with a list of links found on a webpage. \\\n",
"You are able to decide which of the links would be most relevant to include in a brochure about the company, \\\n",
"such as links to an About page, or a Company page, or Careers/Jobs pages.\\n\"\n",
"link_system_prompt += \"You should respond in JSON as in this example:\"\n",
"link_system_prompt += \"\"\"\n",
"{\n",
" \"links\": [\n",
" {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n",
" {\"type\": \"careers page\": \"url\": \"https://another.full.url/careers\"}\n",
" ]\n",
"}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "eb537563-e393-47ca-9af2-a8ea7393edd9",
"metadata": {},
"outputs": [],
"source": [
"def get_links_user_prompt(website):\n",
" user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n",
" user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\\n",
"Do not include Terms of Service, Privacy, email or social media links.\\n\"\n",
" user_prompt += \"Links (some might be relative links):\\n\"\n",
" user_prompt += \"\\n\".join(website.links)\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "033568d2-3f1a-43ac-a288-7a65b4ea86a5",
"metadata": {},
"outputs": [],
"source": [
"def get_links(url):\n",
" website = Website(url)\n",
" response = openai.chat.completions.create(\n",
" model=GPT_MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": link_system_prompt},\n",
" {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n",
" ],\n",
" response_format={\"type\": \"json_object\"}\n",
" )\n",
" result = response.choices[0].message.content\n",
" return json.loads(result)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d8f316ac-f0b1-42d9-88a8-0a61fcb0023d",
"metadata": {},
"outputs": [],
"source": [
"def get_all_details(url):\n",
" result = \"Landing page:\\n\"\n",
" result += Website(url).get_contents()\n",
" links = get_links(url)\n",
" print(\"Found links:\", links)\n",
" for link in links[\"links\"]:\n",
" print(f\"Processing {link['url']}...\")\n",
" result += f\"\\n\\n{link['type']}\\n\"\n",
" result += Website(link[\"url\"]).get_contents()\n",
" return result"
]
},
{
"cell_type": "markdown",
"id": "016e065a-ac5a-48c0-bc4b-e916e9801384",
"metadata": {},
"source": [
"#### System Message"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "ed1c6068-5f4f-47a7-ab97-738dfb94e057",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are an assistant that analyzes the contents of a company website landing page \\\n",
"and creates a short brochure about the company for prospective customers, investors and recruits. \\\n",
"You are also provided with the tone, and the target audience. Provide an appropriate answer. Respond in markdown.\""
]
},
{
"cell_type": "markdown",
"id": "6d4f594c-927d-440f-8aae-33cfeb9c445c",
"metadata": {},
"source": [
"#### LLM Call Functions"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "5b6a0379-3465-4c04-a553-4e4cdb9064b9",
"metadata": {},
"outputs": [],
"source": [
"def stream_gpt(prompt,company_name,url):\n",
" messages = [\n",
" {\"role\": \"user\", \"content\": prompt},\n",
" {\"role\":\"system\",\"content\":system_message}\n",
" ]\n",
" stream = openai.chat.completions.create(\n",
" model=GPT_MODEL,\n",
" messages=messages,\n",
" stream=True\n",
" )\n",
" result = \"\"\n",
" for chunk in stream:\n",
" result += chunk.choices[0].delta.content or \"\"\n",
" yield result"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "a2194e1d-4e99-4127-9515-aa9353382bc6",
"metadata": {},
"outputs": [],
"source": [
"def stream_claude(prompt):\n",
" result = claude.messages.stream(\n",
" model=CLAUDE_MODEL,\n",
" max_tokens=1000,\n",
" temperature=0.7,\n",
" system=system_message,\n",
" messages=[\n",
" {\"role\": \"user\", \"content\": prompt},\n",
" ],\n",
" )\n",
" response = \"\"\n",
" with result as stream:\n",
" for text in stream.text_stream:\n",
" response += text or \"\"\n",
" yield response"
]
},
{
"cell_type": "markdown",
"id": "64adf26c-33b2-4589-8df6-dc5d6da71420",
"metadata": {},
"source": [
"#### Brochure Creation"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "8192f39f-508b-4592-a075-767db68672b3",
"metadata": {},
"outputs": [],
"source": [
"def get_brochure_user_prompt(company_name, url):\n",
" user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n",
" user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company in markdown.\\n\"\n",
" user_prompt += get_all_details(url)\n",
" user_prompt = user_prompt[:5_000] # Truncate if more than 5,000 characters\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "8aebfabe-4d51-4ee7-a9d2-5a379e9427cb",
"metadata": {},
"outputs": [],
"source": [
"def create_brochure(company_name, url,model,tone,target):\n",
" print('create brochure function called')\n",
" prompt = f\"Please generate a company brochure for {company_name}.\"\n",
" prompt += f\"Use a {tone} tone; and target content at {target}\"\n",
" prompt += get_brochure_user_prompt(company_name,url)\n",
" \n",
" if model == \"GPT\":\n",
" result = stream_gpt(prompt,company_name,url)\n",
" elif model==\"Claude\":\n",
" result = stream_claude(prompt,company_name,url)\n",
" else:\n",
" raise ValueError(\"Unknown model\")\n",
" yield from result"
]
},
{
"cell_type": "markdown",
"id": "c5f4f97b-c9d0-4d4c-8b02-e6209ba2549c",
"metadata": {},
"source": [
"#### Putting it all together : Gradio UI"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "33162303-9b49-46fe-a8e0-0d01be45685b",
"metadata": {},
"outputs": [],
"source": [
"force_dark_mode = \"\"\"\n",
"function refresh() {\n",
" const url = new URL(window.location);\n",
" if (url.searchParams.get('__theme') !== 'dark') {\n",
" url.searchParams.set('__theme', 'dark');\n",
" window.location.href = url.href;\n",
" }\n",
"}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "47ab9a41-cecd-4c21-bd68-4a15966b80c4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7877\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7877/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found links: {'links': [{'type': 'about page', 'url': 'https://www.vellum.ai/'}, {'type': 'careers page', 'url': 'https://www.vellum.ai/careers'}]}\n",
"Processing https://www.vellum.ai/...\n",
"Processing https://www.vellum.ai/careers...\n"
]
}
],
"source": [
"gr.Interface(\n",
" fn=create_brochure,\n",
" inputs=[\n",
" gr.Textbox(label='Company Name:'),\n",
" gr.Textbox(label=\"Landing page URL including http:// or https://\"),\n",
" gr.Dropdown(['GPT','Claude'],label='Select Model:'),\n",
" gr.Dropdown(['Formal','Casual','Persuasive','Informative','Conversational'],label='Select Tone:'),\n",
" gr.Dropdown(['Businesses','General Public','Students','Investors','Customers'],label='Select Target Audience:'),\n",
" ],\n",
" outputs = [gr.Markdown(label='Brochure')],\n",
" flagging_mode = 'never',\n",
" js = force_dark_mode\n",
").launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b923b09-6738-450a-9035-2c8d1bb9cae6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|