File size: 11,412 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a98030af-fcd1-4d63-a36e-38ba053498fa",
   "metadata": {},
   "source": [
    "# Week 2 Practice Gradio by Creating Brochure\n",
    "\n",
    "- **Author**: [stoneskin](https://www.github.com/stoneskin)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1c104f45",
   "metadata": {},
   "source": [
    "## Implementation\n",
    "\n",
    "- Use OpenRouter.ai for all different types of LLM models, include many free models from Google,Meta and Deepseek\n",
    "\n",
    "Full code for the Week2 Gradio practice is below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "b8d3e1a1-ba54-4907-97c5-30f89a24775b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "API key looks good so far\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import json\n",
    "import requests\n",
    "from bs4 import BeautifulSoup\n",
    "from typing import List\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import gradio as gr \n",
    "\n",
    "load_dotenv(override=True)\n",
    "\n",
    "api_key = os.getenv('Open_Router_Key')\n",
    "if api_key and api_key.startswith('sk-or-v1') and len(api_key)>10:\n",
    "   print(\"API key looks good so far\")\n",
    "else:\n",
    "   print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")\n",
    "  \n",
    "  \n",
    "openai = OpenAI(\n",
    "    api_key=api_key,\n",
    "    base_url=\"https://openrouter.ai/api/v1\"\n",
    ")\n",
    "\n",
    "MODEL_Gemini2FlashThink = 'google/gemini-2.0-flash-thinking-exp:free'\n",
    "MODEL_Gemini2Pro ='google/gemini-2.0-pro-exp-02-05:free'\n",
    "MODEL_Gemini2FlashLite = 'google/gemini-2.0-flash-lite-preview-02-05:free'\n",
    "MODEL_Meta_Llama33 ='meta-llama/llama-3.3-70b-instruct:free'\n",
    "MODEL_Deepseek_V3='deepseek/deepseek-chat:free'\n",
    "MODEL_Deepseek_R1='deepseek/deepseek-r1-distill-llama-70b:free'\n",
    "MODEL_Qwen_vlplus='qwen/qwen-vl-plus:free'\n",
    "MODEL_OpenAi_o3mini = 'openai/o3-mini'\n",
    "MODEL_OpenAi_4o = 'openai/gpt-4o-2024-11-20'\n",
    "MODEL_Claude_Haiku = 'anthropic/claude-3.5-haiku-20241022'\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "        \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "24866034",
   "metadata": {},
   "outputs": [],
   "source": [
    "MODEL=MODEL_Gemini2Pro  # choice the model you want to use\n",
    "\n",
    "####################\n",
    "system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
    "and creates a short humorous, entertaining, jokey brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
    "Include details of company culture, customers and careers/jobs if you have the information.\"\n",
    "\n",
    "##############################\n",
    "link_system_prompt = \"You are provided with a list of links found on a webpage. \\\n",
    "You are able to decide which of the links would be most relevant to include in a brochure about the company, \\\n",
    "such as links to an About page, or a Company page, or Careers/Jobs pages.\\n\"\n",
    "link_system_prompt += \"You should respond in JSON as in this example:\"\n",
    "link_system_prompt += \"\"\"\n",
    "{\n",
    "    \"links\": [\n",
    "        {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n",
    "        {\"type\": \"careers page\": \"url\": \"https://another.full.url/careers\"}\n",
    "    ]\n",
    "}\n",
    "\"\"\"\n",
    "\n",
    "##############################\n",
    "headers = {\n",
    " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
    "}\n",
    "\n",
    "##############################\n",
    "class Website:\n",
    "    \"\"\"\n",
    "    A utility class to represent a Website that we have scraped, now with links\n",
    "    \"\"\"\n",
    "\n",
    "    def __init__(self, url):\n",
    "        self.url = url\n",
    "        response = requests.get(url, headers=headers)\n",
    "        self.body = response.content\n",
    "        soup = BeautifulSoup(self.body, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        if soup.body:\n",
    "            for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "                irrelevant.decompose()\n",
    "            self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
    "        else:\n",
    "            self.text = \"\"\n",
    "        links = [link.get('href') for link in soup.find_all('a')]\n",
    "        self.links = [link for link in links if link]\n",
    "\n",
    "    def get_contents(self):\n",
    "        return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\"\n",
    "    \n",
    "##############################\n",
    "def get_links_user_prompt(website):\n",
    "    user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n",
    "    user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\\n",
    "Do not include Terms of Service, Privacy, email links.\\n\"\n",
    "    user_prompt += \"Links (some might be relative links):\\n\"\n",
    "    user_prompt += \"\\n\".join(website.links)\n",
    "    return user_prompt\n",
    "\n",
    "##############################\n",
    "def get_links(url):\n",
    "    website = Website(url)\n",
    "    response = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": link_system_prompt},\n",
    "            {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n",
    "      ],\n",
    "        response_format={\"type\": \"json_object\"}\n",
    "    )\n",
    "    result = response.choices[0].message.content\n",
    "    print(\"get_links:\", result)\n",
    "    return json.loads(result)\n",
    "\n",
    "##############################\n",
    "def get_brochure_user_prompt(company_name, url):\n",
    "    user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n",
    "    user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company in markdown.\\n\"\n",
    "    user_prompt += get_all_details(url)\n",
    "    user_prompt = user_prompt[:5_000] # Truncate if more than 5,000 characters\n",
    "    return user_prompt\n",
    "\n",
    "##############################\n",
    "def get_all_details(url):\n",
    "    print(\"get_all_details:\", url)   \n",
    "    result = \"Landing page:\\n\"\n",
    "    result += Website(url).get_contents()\n",
    "    links = get_links(url)\n",
    "    print(\"Found links:\", links)\n",
    "    for link in links[\"links\"]:\n",
    "        result += f\"\\n\\n{link['type']}\\n\"\n",
    "        result += Website(link[\"url\"]).get_contents()\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "82abe132",
   "metadata": {},
   "outputs": [],
   "source": [
    "########### modified stream brochure function for gradio ###################\n",
    "def stream_brochure(company_name, url):\n",
    "    stream = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": system_prompt},\n",
    "            {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
    "          ],\n",
    "        stream=True\n",
    "    )\n",
    "    \n",
    "\n",
    "    result = \"\"\n",
    "    for chunk in stream:\n",
    "        result += chunk.choices[0].delta.content or \"\"\n",
    "        yield result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "902f203b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7872\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7872/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "get_all_details: https://mlccc.herokuapp.com/\n",
      "get_links: {\n",
      "    \"links\": [\n",
      "        {\"type\": \"about page\", \"url\": \"https://mlccc.herokuapp.com/about.html\"},\n",
      "        {\"type\": \"programs\", \"url\": \"https://mlccc.herokuapp.com/program.html\"},\n",
      "        {\"type\": \"camps\", \"url\": \"https://mlccc.herokuapp.com/camps.html\"},\n",
      "        {\"type\": \"community\", \"url\": \"https://mlccc.herokuapp.com/community.html\"},\n",
      "        {\"type\": \"support\", \"url\": \"https://mlccc.herokuapp.com/support.html\"},\n",
      "        {\"type\": \"press\", \"url\": \"https://mlccc.herokuapp.com/press.html\"},\n",
      "        {\"type\": \"newsletter\", \"url\": \"https://mlccc.herokuapp.com/newsletter.html\"},\n",
      "        {\"type\": \"testimonials\", \"url\": \"https://mlccc.herokuapp.com/testimonial.html\"}\n",
      "    ]\n",
      "}\n",
      "Found links: {'links': [{'type': 'about page', 'url': 'https://mlccc.herokuapp.com/about.html'}, {'type': 'programs', 'url': 'https://mlccc.herokuapp.com/program.html'}, {'type': 'camps', 'url': 'https://mlccc.herokuapp.com/camps.html'}, {'type': 'community', 'url': 'https://mlccc.herokuapp.com/community.html'}, {'type': 'support', 'url': 'https://mlccc.herokuapp.com/support.html'}, {'type': 'press', 'url': 'https://mlccc.herokuapp.com/press.html'}, {'type': 'newsletter', 'url': 'https://mlccc.herokuapp.com/newsletter.html'}, {'type': 'testimonials', 'url': 'https://mlccc.herokuapp.com/testimonial.html'}]}\n"
     ]
    }
   ],
   "source": [
    "view = gr.Interface(\n",
    "    fn=stream_brochure,\n",
    "    inputs=[gr.Textbox(label=\"company Name\"), gr.Textbox(label=\"URL\")],\n",
    "    outputs=[gr.Markdown(label=\"Response:\")],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llms",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}