File size: 17,565 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "d006b2ea-9dfe-49c7-88a9-a5a0775185fd",
   "metadata": {},
   "source": [
    "# Additional End of week Exercise - week 2\n",
    "\n",
    "Now use everything you've learned from Week 2 to build a full prototype for the technical question/answerer you built in Week 1 Exercise.\n",
    "\n",
    "This should include a Gradio UI, streaming, use of the system prompt to add expertise, and the ability to switch between models. Bonus points if you can demonstrate use of a tool!\n",
    "\n",
    "If you feel bold, see if you can add audio input so you can talk to it, and have it respond with audio. ChatGPT or Claude can help you, or email me if you have questions.\n",
    "\n",
    "I will publish a full solution here soon - unless someone beats me to it...\n",
    "\n",
    "There are so many commercial applications for this, from a language tutor, to a company onboarding solution, to a companion AI to a course (like this one!) I can't wait to see your results."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 140,
   "id": "a07e7793-b8f5-44f4-aded-5562f633271a",
   "metadata": {},
   "outputs": [],
   "source": [
    " # imports\n",
    "import os\n",
    "import json\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import gradio as gr\n",
    "from IPython.display import Markdown, display, update_display\n",
    "import requests\n",
    "from bs4 import BeautifulSoup\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 141,
   "id": "158493a7-54b7-47f7-9e7e-1a783e164213",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "OpenAI API Key exists and begins sk-proj-\n",
      "Anthropic API Key not set\n",
      "Google API Key not set\n"
     ]
    }
   ],
   "source": [
    "# Load environment variables in a file called .env\n",
    "# Print the key prefixes to help with any debugging\n",
    "\n",
    "load_dotenv(override=True)\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
    "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")\n",
    "    \n",
    "if anthropic_api_key:\n",
    "    print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
    "else:\n",
    "    print(\"Anthropic API Key not set\")\n",
    "\n",
    "if google_api_key:\n",
    "    print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"Google API Key not set\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 142,
   "id": "2b8b8218-142d-4a06-9b8a-3065437cc99f",
   "metadata": {},
   "outputs": [],
   "source": [
    "load_dotenv(override=True)\n",
    "api_key = os.getenv('OPENAI_API_KEY')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 143,
   "id": "7cf83ab4-6e6f-4ef1-8277-38c8b7c375ba",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_message = \"You are an assistant that analyzes the contents of a website \\\n",
    "and provides a short summary, ignoring text that might be navigation related. \\\n",
    "Respond in markdown.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 164,
   "id": "4dfd49f0-6e29-45e1-8477-77744b121170",
   "metadata": {},
   "outputs": [],
   "source": [
    "# constants\n",
    "\n",
    "MODEL_GPT = 'gpt-4o-mini'\n",
    "MODEL_LLAMA = 'llama3.2'\n",
    "openai = OpenAI()\n",
    "LLAMA_API = \"http://localhost:11434/api/chat\"\n",
    "HEADERS = {\"Content-Type\": \"application/json\"}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 145,
   "id": "77c3788f-aaaa-4d40-9b9b-618e4cd129c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "\n",
    "# Some websites need you to use proper headers when fetching them:\n",
    "headers = {\n",
    " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
    "}\n",
    "\n",
    "class Website:\n",
    "    \"\"\"\n",
    "    A utility class to represent a Website that we have scraped, now with links\n",
    "    \"\"\"\n",
    "\n",
    "    def __init__(self, url):\n",
    "        self.url = url\n",
    "        response = requests.get(url, headers=headers)\n",
    "        self.body = response.content\n",
    "        soup = BeautifulSoup(self.body, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        if soup.body:\n",
    "            for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "                irrelevant.decompose()\n",
    "            self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
    "        else:\n",
    "            self.text = \"\"\n",
    "        links = [link.get('href') for link in soup.find_all('a')]\n",
    "        self.links = [link for link in links if link]\n",
    "\n",
    "    def get_contents(self):\n",
    "        return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 146,
   "id": "8acefa5c-de13-48e4-aa37-da1f596edb58",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_info_web(url):\n",
    "    Website(url)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 147,
   "id": "a5f61b1f-3884-4af8-b57f-cc820e93ff18",
   "metadata": {},
   "outputs": [],
   "source": [
    "web_function = {\n",
    "    \"name\": \"get_info_web\",\n",
    "    \"description\": \"Get the information of website to explain to user. Call this whenever you need to know about the any website, for example when a user asks 'what about this website ,or could you give information about this website'\",\n",
    "    \"parameters\": {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"website_link\": {\n",
    "                \"type\": \"string\",\n",
    "                \"description\": \"the website that customer ask to know information about website\",\n",
    "            },\n",
    "        },\n",
    "        \"required\": [\"website_link\"],\n",
    "        \"additionalProperties\": False\n",
    "    }\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 148,
   "id": "048be95d-d5ad-425d-8ba9-40c6bf81a1ce",
   "metadata": {},
   "outputs": [],
   "source": [
    "tools = [{\"type\": \"function\", \"function\": web_function}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 159,
   "id": "05b7481f-b81b-4b12-947e-47411d272df4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def handle_tool_call(message):\n",
    "    try:\n",
    "        tool_call = message.tool_calls[0]\n",
    "        args = json.loads(tool_call.function.arguments)\n",
    "        url = args.get('website_link')\n",
    "\n",
    "        if not url:\n",
    "            raise ValueError(\"Website link not provided in the tool call arguments\")\n",
    "\n",
    "        if not url.startswith(('http://', 'https://')):\n",
    "            url = f\"https://{url}\"\n",
    "\n",
    "        website = Website(url)\n",
    "        web_info = {\n",
    "            \"title\": website.title,\n",
    "            \"text\": website.text,\n",
    "            \"links\": website.links\n",
    "        }\n",
    "\n",
    "        response = {\n",
    "            \"role\": \"tool\",\n",
    "            \"content\": json.dumps({\"web_info\": web_info}),\n",
    "            \"tool_call_id\": tool_call.id\n",
    "        }\n",
    "        return response, url \n",
    "\n",
    "    except Exception as e:\n",
    "        print(f\"Error handling tool call: {str(e)}\")\n",
    "        return {}, None\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 213,
   "id": "4e98fa13-aab6-4093-a1da-6f226b4bce4b",
   "metadata": {
    "editable": true,
    "slideshow": {
     "slide_type": ""
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "def chat_gpt(message, history): \n",
    "    messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=MODEL_GPT, messages=messages, tools=tools)\n",
    "\n",
    "    if response.choices[0].finish_reason==\"tool_calls\":\n",
    "        message = response.choices[0].message\n",
    "        print(message)\n",
    "        response, url = handle_tool_call(message)\n",
    "        messages.append(message)\n",
    "        messages.append(response)\n",
    "        response = openai.chat.completions.create(model=MODEL_GPT, messages=messages) \n",
    "    \n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 216,
   "id": "5727f4be-d1cd-499e-95e0-af656d19140d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import ollama\n",
    "\n",
    "def chat_llama(message, history):\n",
    "    client = ollama.Client()\n",
    "    # Constructing the messages history for the API request\n",
    "    messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    request_payload = {\n",
    "        \"messages\": messages,\n",
    "        \"model\": MODEL_LLAMA\n",
    "    }\n",
    "    \n",
    "    try:\n",
    "        # Using request_payload in the API call\n",
    "        response = client.chat(**request_payload)\n",
    "        # Assuming response from ollama.Client().chat() is already a dict\n",
    "        print(\"API Response:\", response)\n",
    "\n",
    "        if 'choices' in response and response['choices'][0].get('finish_reason') == \"tool_calls\":\n",
    "            tool_message = response['choices'][0]['message']\n",
    "            print(\"Handling tool call with message:\", tool_message)\n",
    "            response_message, url = handle_tool_call(tool_message)\n",
    "            messages.append({\"role\": \"system\", \"content\": response_message})\n",
    "            # Update the request payload with the new history\n",
    "            request_payload['messages'] = messages\n",
    "            response = client.chat(**request_payload)\n",
    "            response = response  # Assuming direct use of response if dict\n",
    "\n",
    "        return response['message']['content']\n",
    "\n",
    "    except Exception as e:\n",
    "        print(\"Failed to process API call:\", e)\n",
    "        return \"Error processing your request.\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 227,
   "id": "6c14242d-2c3a-4101-a5f2-93591cad3539",
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history, model):\n",
    "    print(model)\n",
    "    if model == \"GPT\":\n",
    "        return chat_gpt(message, history)\n",
    "    elif model == \"LLama\":\n",
    "        return chat_llama(message, history)\n",
    "    else:\n",
    "        return \"Model not recognized.\"\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ca10f176-637f-4a8a-b405-bdf50f124d5c",
   "metadata": {},
   "outputs": [],
   "source": [
    "gr.ChatInterface(fn=chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 235,
   "id": "1f976a2a-064b-4e58-9146-f779ec18f612",
   "metadata": {
    "editable": true,
    "slideshow": {
     "slide_type": ""
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7947\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7947/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 235,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "LLama\n",
      "API Response: model='llama3.2' created_at='2025-03-28T03:17:58.3651071Z' done=True done_reason='stop' total_duration=1682458000 load_duration=54845900 prompt_eval_count=72 prompt_eval_duration=6315300 eval_count=84 eval_duration=1619506600 message=Message(role='assistant', content=\"## Getting Started\\nThis conversation has just begun. I'll wait for you to provide more information about the website you'd like me to analyze.\\n\\nIf you need my help with something specific or would like to analyze a website, please let me know by providing the URL of the website or the content you'd like me to summarize. \\n\\nFor example: `# Analyze this website: https://www.example.com`\", images=None, tool_calls=None)\n",
      "GPT\n",
      "GPT\n",
      "LLama\n",
      "API Response: model='llama3.2' created_at='2025-03-28T03:18:26.8038878Z' done=True done_reason='stop' total_duration=2109343800 load_duration=59065100 prompt_eval_count=262 prompt_eval_duration=286861800 eval_count=113 eval_duration=1757850900 message=Message(role='assistant', content='**About Me**\\nI am Assistant, a text analysis assistant trained on a variety of languages and content types.\\n\\n**LLM Used**\\nI utilize a combination of natural language processing (NLP) techniques and machine learning algorithms from the **Hugging Face Transformers** library.\\n\\n**Specialization**\\nMy primary function is to analyze and summarize website contents, ignoring navigation-related text. I can help with tasks such as:\\n* Website content analysis\\n* Summary generation\\n* Text extraction\\n\\nFeel free to ask me any questions or provide a website URL for me to analyze!', images=None, tool_calls=None)\n",
      "LLama\n",
      "API Response: model='llama3.2' created_at='2025-03-28T03:18:47.7740007Z' done=True done_reason='stop' total_duration=2157777800 load_duration=57480900 prompt_eval_count=388 prompt_eval_duration=97088100 eval_count=114 eval_duration=1974506500 message=Message(role='assistant', content=\"**Model Name**\\nMy underlying language model is based on the **BERT** (Bidirectional Encoder Representations from Transformers) architecture, with a customized training dataset.\\n\\nHowever, I'm a bit of a unique snowflake, so to speak. My training data includes a wide range of texts and sources from the web, which allows me to understand and generate human-like text in various contexts.\\n\\nBut if you want to get technical, my model is built on top of the **Hugging Face Transformers** library, using a variant of the **DistilBERT** model.\", images=None, tool_calls=None)\n",
      "LLama\n",
      "API Response: model='llama3.2' created_at='2025-03-28T03:19:08.4913148Z' done=True done_reason='stop' total_duration=1972427600 load_duration=57674400 prompt_eval_count=521 prompt_eval_duration=223374300 eval_count=107 eval_duration=1680345600 message=Message(role='assistant', content=\"**Searching for Me**\\nIf you're looking to find me, you can try searching with the following terms:\\n\\n* `Assistant` (just my name!)\\n* `Llama` or `GBT` (my personality traits)\\n* `Text analysis assistant`\\n* `Website content summary generator`\\n\\nYou can also try searching on popular search engines like Google, Bing, or DuckDuckGo. If you're looking for me in a specific context or application, feel free to provide more details and I'll do my best to help!\", images=None, tool_calls=None)\n"
     ]
    }
   ],
   "source": [
    "Models = [\"GPT\", \"LLama\"] \n",
    "with gr.Blocks() as view:\n",
    "    # Dropdown for model selection\n",
    "    model_select = gr.Dropdown(Models, label=\"Select Model\", value=\"GPT\")\n",
    "\n",
    "    chat_interface = gr.ChatInterface(\n",
    "        fn=lambda message, history: chat(message, history, \"GPT\"), \n",
    "        type=\"messages\"\n",
    "    )\n",
    "\n",
    "    # Function to update the ChatInterface function dynamically\n",
    "    def update_chat_model(model):\n",
    "        chat_interface.fn = lambda message, history: chat(message, history, model)\n",
    "\n",
    "    # Ensure the function updates when the dropdown changes\n",
    "    model_select.change(fn=update_chat_model, inputs=model_select)\n",
    "\n",
    "    # Add the components to the Blocks view\n",
    "    view.add(model_select)\n",
    "    view.add(chat_interface)\n",
    "\n",
    "view.launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}