File size: 5,807 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "06cf3063-9f3e-4551-a0d5-f08d9cabb927",
   "metadata": {},
   "source": [
    "# Conversation War between LLMs!!\n",
    "\n",
    "This code sets up a conversation between GPT(Connected via API) and llama3.2 (local) with different tones for both"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "de23bb9e-37c5-4377-9a82-d7b6c648eeb6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "from IPython.display import Markdown, display, update_display\n",
    "import ollama"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1179b4c5-cd1f-4131-a876-4c9f3f38d2ba",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "# Print the key prefixes to help with any debugging\n",
    "\n",
    "load_dotenv(override=True)\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "797fe7b0-ad43-42d2-acf0-e4f309b112f0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Connect to OpenAI, Anthropic\n",
    "\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "81be3a29-bd5d-4c37-bba2-386dba0bc88b",
   "metadata": {},
   "outputs": [],
   "source": [
    "!ollama pull llama3.2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bcb54183-45d3-4d08-b5b6-55e380dfdf1b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's make a conversation between GPT-4o-mini and Claude-3-haiku\n",
    "# We're using cheap versions of models so the costs will be minimal\n",
    "\n",
    "gpt_model = \"gpt-4o-mini\"\n",
    "ollama_model = \"llama3.2\"\n",
    "\n",
    "gpt_system = \"You are a chatbot who is very argumentative; \\\n",
    "you disagree with anything in the conversation and you challenge everything, in a snarky way.\"\n",
    "\n",
    "ollama_system = \"You are a very polite, courteous chatbot. You try to agree with \\\n",
    "everything the other person says, or find common ground. If the other person is argumentative, \\\n",
    "you try to calm them down and keep chatting.\"\n",
    "\n",
    "gpt_messages = [\"Hi there\"]\n",
    "ollama_messages = [\"Hi\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1df47dc7-b445-4852-b21b-59f0e6c2030f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def call_gpt():\n",
    "    messages = [{\"role\": \"system\", \"content\": gpt_system}]\n",
    "    for gpt, ollama in zip(gpt_messages, ollama_messages):\n",
    "        messages.append({\"role\": \"assistant\", \"content\": gpt})\n",
    "        messages.append({\"role\": \"user\", \"content\": ollama})\n",
    "    # print(messages)\n",
    "    completion = openai.chat.completions.create(\n",
    "        model=gpt_model,\n",
    "        messages=messages\n",
    "    )\n",
    "    return completion.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f204f514-6769-4455-a7ff-95ec69f98f4c",
   "metadata": {},
   "outputs": [],
   "source": [
    "ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e04b96ae-2b5e-44a1-aea3-7b12ec450db5",
   "metadata": {},
   "outputs": [],
   "source": [
    "def call_ollama():\n",
    "    messages = [{\"role\": \"system\", \"content\": ollama_system}]\n",
    "    for gpt, ollama in zip(gpt_messages, ollama_messages):\n",
    "        messages.append({\"role\": \"assistant\", \"content\": ollama})\n",
    "        messages.append({\"role\": \"user\", \"content\": gpt})\n",
    "    messages.append({\"role\": \"user\", \"content\": gpt_messages[-1]})\n",
    "    # print(messages)\n",
    "    completion = ollama_via_openai.chat.completions.create(\n",
    "        model=ollama_model,\n",
    "        messages=messages\n",
    "    )\n",
    "    return completion.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0275b97f-7f90-4696-bbf5-b6642bd53cbd",
   "metadata": {},
   "outputs": [],
   "source": [
    "gpt_messages = [\"Hi there\"]\n",
    "ollama_messages = [\"Hi\"]\n",
    "\n",
    "print(f\"GPT:\\n{gpt_messages[0]}\\n\")\n",
    "print(f\"Ollama:\\n{ollama_messages[0]}\\n\")\n",
    "\n",
    "for i in range(5):\n",
    "    gpt_next = call_gpt()\n",
    "    print(f\"GPT:\")\n",
    "    display(Markdown(gpt_next))\n",
    "    print(f\"\\n\")\n",
    "    gpt_messages.append(gpt_next)\n",
    "    \n",
    "    ollama_next = call_ollama()\n",
    "    print(f\"Ollama:\")\n",
    "    display(Markdown(ollama_next))\n",
    "    print(f\"\\n\")\n",
    "    ollama_messages.append(ollama_next)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c23224f6-7008-44ed-a57f-718975f4e291",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}