File size: 18,783 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a98030af-fcd1-4d63-a36e-38ba053498fa",
   "metadata": {},
   "source": [
    "# A full business solution\n",
    "\n",
    "## Now we will take our project from Day 1 to the next level\n",
    "\n",
    "### BUSINESS CHALLENGE:\n",
    "\n",
    "Create a product that builds a Brochure for a company to be used for prospective clients, investors and potential recruits.\n",
    "\n",
    "We will be provided a company name and their primary website.\n",
    "\n",
    "See the end of this notebook for examples of real-world business applications.\n",
    "\n",
    "And remember: I'm always available if you have problems or ideas! Please do reach out."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d5b08506-dc8b-4443-9201-5f1848161363",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "# If these fail, please check you're running from an 'activated' environment with (llms) in the command prompt\n",
    "\n",
    "import os\n",
    "import requests\n",
    "import json\n",
    "from typing import List\n",
    "from dotenv import load_dotenv\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display, update_display\n",
    "from openai import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fc5d8880-f2ee-4c06-af16-ecbc0262af61",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize and constants\n",
    "\n",
    "load_dotenv(override=True)\n",
    "api_key = os.getenv('OPENAI_API_KEY')\n",
    "\n",
    "if api_key and api_key.startswith('sk-proj-') and len(api_key)>10:\n",
    "    print(\"API key looks good so far\")\n",
    "else:\n",
    "    print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")\n",
    "    \n",
    "MODEL = 'gpt-4o-mini'\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "106dd65e-90af-4ca8-86b6-23a41840645b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "\n",
    "# Some websites need you to use proper headers when fetching them:\n",
    "headers = {\n",
    " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
    "}\n",
    "\n",
    "class Website:\n",
    "    \"\"\"\n",
    "    A utility class to represent a Website that we have scraped, now with links\n",
    "    \"\"\"\n",
    "\n",
    "    def __init__(self, url):\n",
    "        self.url = url\n",
    "        response = requests.get(url, headers=headers)\n",
    "        self.body = response.content\n",
    "        soup = BeautifulSoup(self.body, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        if soup.body:\n",
    "            for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "                irrelevant.decompose()\n",
    "            self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
    "        else:\n",
    "            self.text = \"\"\n",
    "        links = [link.get('href') for link in soup.find_all('a')]\n",
    "        self.links = [link for link in links if link]\n",
    "\n",
    "    def get_contents(self):\n",
    "        return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e30d8128-933b-44cc-81c8-ab4c9d86589a",
   "metadata": {},
   "outputs": [],
   "source": [
    "ed = Website(\"https://edwarddonner.com\")\n",
    "ed.links"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1771af9c-717a-4fca-bbbe-8a95893312c3",
   "metadata": {},
   "source": [
    "## First step: Have GPT-4o-mini figure out which links are relevant\n",
    "\n",
    "### Use a call to gpt-4o-mini to read the links on a webpage, and respond in structured JSON.  \n",
    "It should decide which links are relevant, and replace relative links such as \"/about\" with \"https://company.com/about\".  \n",
    "We will use \"one shot prompting\" in which we provide an example of how it should respond in the prompt.\n",
    "\n",
    "This is an excellent use case for an LLM, because it requires nuanced understanding. Imagine trying to code this without LLMs by parsing and analyzing the webpage - it would be very hard!\n",
    "\n",
    "Sidenote: there is a more advanced technique called \"Structured Outputs\" in which we require the model to respond according to a spec. We cover this technique in Week 8 during our autonomous Agentic AI project."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6957b079-0d96-45f7-a26a-3487510e9b35",
   "metadata": {},
   "outputs": [],
   "source": [
    "link_system_prompt = \"You are provided with a list of links found on a webpage. \\\n",
    "You are able to decide which of the links would be most relevant to include in a brochure about the company, \\\n",
    "such as links to an About page, or a Company page, or Careers/Jobs pages.\\n\"\n",
    "link_system_prompt += \"You should respond in JSON as in this example:\"\n",
    "link_system_prompt += \"\"\"\n",
    "{\n",
    "    \"links\": [\n",
    "        {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n",
    "        {\"type\": \"careers page\": \"url\": \"https://another.full.url/careers\"}\n",
    "    ]\n",
    "}\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b97e4068-97ed-4120-beae-c42105e4d59a",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(link_system_prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8e1f601b-2eaf-499d-b6b8-c99050c9d6b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_links_user_prompt(website):\n",
    "    user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n",
    "    user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\\n",
    "Do not include Terms of Service, Privacy, email links.\\n\"\n",
    "    user_prompt += \"Links (some might be relative links):\\n\"\n",
    "    user_prompt += \"\\n\".join(website.links)\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6bcbfa78-6395-4685-b92c-22d592050fd7",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(get_links_user_prompt(ed))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a29aca19-ca13-471c-a4b4-5abbfa813f69",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_links(url):\n",
    "    website = Website(url)\n",
    "    response = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": link_system_prompt},\n",
    "            {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n",
    "      ],\n",
    "        response_format={\"type\": \"json_object\"}\n",
    "    )\n",
    "    result = response.choices[0].message.content\n",
    "    return json.loads(result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74a827a0-2782-4ae5-b210-4a242a8b4cc2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Anthropic has made their site harder to scrape, so I'm using HuggingFace..\n",
    "\n",
    "huggingface = Website(\"https://huggingface.co\")\n",
    "huggingface.links"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d3d583e2-dcc4-40cc-9b28-1e8dbf402924",
   "metadata": {},
   "outputs": [],
   "source": [
    "get_links(\"https://huggingface.co\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0d74128e-dfb6-47ec-9549-288b621c838c",
   "metadata": {},
   "source": [
    "## Second step: make the brochure!\n",
    "\n",
    "Assemble all the details into another prompt to GPT4-o"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "85a5b6e2-e7ef-44a9-bc7f-59ede71037b5",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_all_details(url):\n",
    "    result = \"Landing page:\\n\"\n",
    "    result += Website(url).get_contents()\n",
    "    links = get_links(url)\n",
    "    print(\"Found links:\", links)\n",
    "    for link in links[\"links\"]:\n",
    "        result += f\"\\n\\n{link['type']}\\n\"\n",
    "        result += Website(link[\"url\"]).get_contents()\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5099bd14-076d-4745-baf3-dac08d8e5ab2",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(get_all_details(\"https://huggingface.co\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9b863a55-f86c-4e3f-8a79-94e24c1a8cf2",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
    "and creates a short brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
    "Include details of company culture, customers and careers/jobs if you have the information.\"\n",
    "\n",
    "# Or uncomment the lines below for a more humorous brochure - this demonstrates how easy it is to incorporate 'tone':\n",
    "\n",
    "# system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
    "# and creates a short humorous, entertaining, jokey brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
    "# Include details of company culture, customers and careers/jobs if you have the information.\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6ab83d92-d36b-4ce0-8bcc-5bb4c2f8ff23",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_brochure_user_prompt(company_name, url):\n",
    "    user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n",
    "    user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company in markdown.\\n\"\n",
    "    user_prompt += get_all_details(url)\n",
    "    user_prompt = user_prompt[:5_000] # Truncate if more than 5,000 characters\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cd909e0b-1312-4ce2-a553-821e795d7572",
   "metadata": {},
   "outputs": [],
   "source": [
    "get_brochure_user_prompt(\"HuggingFace\", \"https://huggingface.co\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e44de579-4a1a-4e6a-a510-20ea3e4b8d46",
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_brochure(company_name, url):\n",
    "    response = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": system_prompt},\n",
    "            {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
    "          ],\n",
    "    )\n",
    "    result = response.choices[0].message.content\n",
    "    display(Markdown(result))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e093444a-9407-42ae-924a-145730591a39",
   "metadata": {},
   "outputs": [],
   "source": [
    "create_brochure(\"HuggingFace\", \"https://huggingface.co\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "61eaaab7-0b47-4b29-82d4-75d474ad8d18",
   "metadata": {},
   "source": [
    "## Finally - a minor improvement\n",
    "\n",
    "With a small adjustment, we can change this so that the results stream back from OpenAI,\n",
    "with the familiar typewriter animation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "51db0e49-f261-4137-aabe-92dd601f7725",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_brochure(company_name, url):\n",
    "    stream = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": system_prompt},\n",
    "            {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
    "          ],\n",
    "        stream=True\n",
    "    )\n",
    "    \n",
    "    response = \"\"\n",
    "    display_handle = display(Markdown(\"\"), display_id=True)\n",
    "    for chunk in stream:\n",
    "        response += chunk.choices[0].delta.content or ''\n",
    "        response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
    "        update_display(Markdown(response), display_id=display_handle.display_id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "56bf0ae3-ee9d-4a72-9cd6-edcac67ceb6d",
   "metadata": {},
   "outputs": [],
   "source": [
    "stream_brochure(\"HuggingFace\", \"https://huggingface.co\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fdb3f8d8-a3eb-41c8-b1aa-9f60686a653b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Try changing the system prompt to the humorous version when you make the Brochure for Hugging Face:\n",
    "\n",
    "stream_brochure(\"HuggingFace\", \"https://huggingface.co\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a27bf9e0-665f-4645-b66b-9725e2a959b5",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../business.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#181;\">Business applications</h2>\n",
    "            <span style=\"color:#181;\">In this exercise we extended the Day 1 code to make multiple LLM calls, and generate a document.\n",
    "\n",
    "This is perhaps the first example of Agentic AI design patterns, as we combined multiple calls to LLMs. This will feature more in Week 2, and then we will return to Agentic AI in a big way in Week 8 when we build a fully autonomous Agent solution.\n",
    "\n",
    "Generating content in this way is one of the very most common Use Cases. As with summarization, this can be applied to any business vertical. Write marketing content, generate a product tutorial from a spec, create personalized email content, and so much more. Explore how you can apply content generation to your business, and try making yourself a proof-of-concept prototype. See what other students have done in the community-contributions folder -- so many valuable projects -- it's wild!</span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "14b2454b-8ef8-4b5c-b928-053a15e0d553",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../important.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#900;\">Before you move to Week 2 (which is tons of fun)</h2>\n",
    "            <span style=\"color:#900;\">Please see the week1 EXERCISE notebook for your challenge for the end of week 1. This will give you some essential practice working with Frontier APIs, and prepare you well for Week 2.</span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "17b64f0f-7d33-4493-985a-033d06e8db08",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../resources.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#f71;\">A reminder on 3 useful resources</h2>\n",
    "            <span style=\"color:#f71;\">1. The resources for the course are available <a href=\"https://edwarddonner.com/2024/11/13/llm-engineering-resources/\">here.</a><br/>\n",
    "            2. I'm on LinkedIn <a href=\"https://www.linkedin.com/in/eddonner/\">here</a> and I love connecting with people taking the course!<br/>\n",
    "            3. I'm trying out X/Twitter and I'm at <a href=\"https://x.com/edwarddonner\">@edwarddonner<a> and hoping people will teach me how it's done..  \n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6f48e42e-fa7a-495f-a5d4-26bfc24d60b6",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../thankyou.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#090;\">Finally! I have a special request for you</h2>\n",
    "            <span style=\"color:#090;\">\n",
    "                My editor tells me that it makes a MASSIVE difference when students rate this course on Udemy - it's one of the main ways that Udemy decides whether to show it to others. If you're able to take a minute to rate this, I'd be so very grateful! And regardless - always please reach out to me at [email protected] if I can help at any point.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b8d3e1a1-ba54-4907-97c5-30f89a24775b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}