File size: 10,812 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "d15d8294-3328-4e07-ad16-8a03e9bbfdb9",
   "metadata": {},
   "source": [
    "# Welcome to your first assignment!\n",
    "\n",
    "Instructions are below. Please give this a try, and look in the solutions folder if you get stuck (or feel free to ask me!)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ada885d9-4d42-4d9b-97f0-74fbbbfe93a9",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../resources.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#f71;\">Just before we get to the assignment --</h2>\n",
    "            <span style=\"color:#f71;\">I thought I'd take a second to point you at this page of useful resources for the course. This includes links to all the slides.<br/>\n",
    "            <a href=\"https://edwarddonner.com/2024/11/13/llm-engineering-resources/\">https://edwarddonner.com/2024/11/13/llm-engineering-resources/</a><br/>\n",
    "            Please keep this bookmarked, and I'll continue to add more useful links there over time.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6e9fa1fc-eac5-4d1d-9be4-541b3f2b3458",
   "metadata": {},
   "source": [
    "# HOMEWORK EXERCISE ASSIGNMENT\n",
    "\n",
    "Upgrade the day 1 project to summarize a webpage to use an Open Source model running locally via Ollama rather than OpenAI\n",
    "\n",
    "You'll be able to use this technique for all subsequent projects if you'd prefer not to use paid APIs.\n",
    "\n",
    "**Benefits:**\n",
    "1. No API charges - open-source\n",
    "2. Data doesn't leave your box\n",
    "\n",
    "**Disadvantages:**\n",
    "1. Significantly less power than Frontier Model\n",
    "\n",
    "## Recap on installation of Ollama\n",
    "\n",
    "Simply visit [ollama.com](https://ollama.com) and install!\n",
    "\n",
    "Once complete, the ollama server should already be running locally.  \n",
    "If you visit:  \n",
    "[http://localhost:11434/](http://localhost:11434/)\n",
    "\n",
    "You should see the message `Ollama is running`.  \n",
    "\n",
    "If not, bring up a new Terminal (Mac) or Powershell (Windows) and enter `ollama serve`  \n",
    "And in another Terminal (Mac) or Powershell (Windows), enter `ollama pull llama3.2`  \n",
    "Then try [http://localhost:11434/](http://localhost:11434/) again.\n",
    "\n",
    "If Ollama is slow on your machine, try using `llama3.2:1b` as an alternative. Run `ollama pull llama3.2:1b` from a Terminal or Powershell, and change the code below from `MODEL = \"llama3.2\"` to `MODEL = \"llama3.2:1b\"`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4e2a9393-7767-488e-a8bf-27c12dca35bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import requests\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "29ddd15d-a3c5-4f4e-a678-873f56162724",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Constants\n",
    "\n",
    "OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
    "HEADERS = {\"Content-Type\": \"application/json\"}\n",
    "MODEL = \"llama3.2\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dac0a679-599c-441f-9bf2-ddc73d35b940",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a messages list using the same format that we used for OpenAI\n",
    "\n",
    "messages = [\n",
    "    {\"role\": \"user\", \"content\": \"Describe some of the business applications of Generative AI\"}\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7bb9c624-14f0-4945-a719-8ddb64f66f47",
   "metadata": {},
   "outputs": [],
   "source": [
    "payload = {\n",
    "        \"model\": MODEL,\n",
    "        \"messages\": messages,\n",
    "        \"stream\": False\n",
    "    }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "479ff514-e8bd-4985-a572-2ea28bb4fa40",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's just make sure the model is loaded\n",
    "\n",
    "!ollama pull llama3.2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "42b9f644-522d-4e05-a691-56e7658c0ea9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# If this doesn't work for any reason, try the 2 versions in the following cells\n",
    "# And double check the instructions in the 'Recap on installation of Ollama' at the top of this lab\n",
    "# And if none of that works - contact me!\n",
    "\n",
    "response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n",
    "print(response.json()['message']['content'])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a021f13-d6a1-4b96-8e18-4eae49d876fe",
   "metadata": {},
   "source": [
    "# Introducing the ollama package\n",
    "\n",
    "And now we'll do the same thing, but using the elegant ollama python package instead of a direct HTTP call.\n",
    "\n",
    "Under the hood, it's making the same call as above to the ollama server running at localhost:11434"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7745b9c4-57dc-4867-9180-61fa5db55eb8",
   "metadata": {},
   "outputs": [],
   "source": [
    "import ollama\n",
    "\n",
    "response = ollama.chat(model=MODEL, messages=messages)\n",
    "print(response['message']['content'])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a4704e10-f5fb-4c15-a935-f046c06fb13d",
   "metadata": {},
   "source": [
    "## Alternative approach - using OpenAI python library to connect to Ollama"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "23057e00-b6fc-4678-93a9-6b31cb704bff",
   "metadata": {},
   "outputs": [],
   "source": [
    "# There's actually an alternative approach that some people might prefer\n",
    "# You can use the OpenAI client python library to call Ollama:\n",
    "\n",
    "from openai import OpenAI\n",
    "ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
    "\n",
    "response = ollama_via_openai.chat.completions.create(\n",
    "    model=MODEL,\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "print(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9f9e22da-b891-41f6-9ac9-bd0c0a5f4f44",
   "metadata": {},
   "source": [
    "## Are you confused about why that works?\n",
    "\n",
    "It seems strange, right? We just used OpenAI code to call Ollama?? What's going on?!\n",
    "\n",
    "Here's the scoop:\n",
    "\n",
    "The python class `OpenAI` is simply code written by OpenAI engineers that makes calls over the internet to an endpoint.  \n",
    "\n",
    "When you call `openai.chat.completions.create()`, this python code just makes a web request to the following url: \"https://api.openai.com/v1/chat/completions\"\n",
    "\n",
    "Code like this is known as a \"client library\" - it's just wrapper code that runs on your machine to make web requests. The actual power of GPT is running on OpenAI's cloud behind this API, not on your computer!\n",
    "\n",
    "OpenAI was so popular, that lots of other AI providers provided identical web endpoints, so you could use the same approach.\n",
    "\n",
    "So Ollama has an endpoint running on your local box at http://localhost:11434/v1/chat/completions  \n",
    "And in week 2 we'll discover that lots of other providers do this too, including Gemini and DeepSeek.\n",
    "\n",
    "And then the team at OpenAI had a great idea: they can extend their client library so you can specify a different 'base url', and use their library to call any compatible API.\n",
    "\n",
    "That's it!\n",
    "\n",
    "So when you say: `ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')`  \n",
    "Then this will make the same endpoint calls, but to Ollama instead of OpenAI."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bc7d1de3-e2ac-46ff-a302-3b4ba38c4c90",
   "metadata": {},
   "source": [
    "## Also trying the amazing reasoning model DeepSeek\n",
    "\n",
    "Here we use the version of DeepSeek-reasoner that's been distilled to 1.5B.  \n",
    "This is actually a 1.5B variant of Qwen that has been fine-tuned using synethic data generated by Deepseek R1.\n",
    "\n",
    "Other sizes of DeepSeek are [here](https://ollama.com/library/deepseek-r1) all the way up to the full 671B parameter version, which would use up 404GB of your drive and is far too large for most!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cf9eb44e-fe5b-47aa-b719-0bb63669ab3d",
   "metadata": {},
   "outputs": [],
   "source": [
    "!ollama pull deepseek-r1:1.5b"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1d3d554b-e00d-4c08-9300-45e073950a76",
   "metadata": {},
   "outputs": [],
   "source": [
    "# This may take a few minutes to run! You should then see a fascinating \"thinking\" trace inside <think> tags, followed by some decent definitions\n",
    "\n",
    "response = ollama_via_openai.chat.completions.create(\n",
    "    model=\"deepseek-r1:1.5b\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Please give definitions of some core concepts behind LLMs: a neural network, attention and the transformer\"}]\n",
    ")\n",
    "\n",
    "print(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1622d9bb-5c68-4d4e-9ca4-b492c751f898",
   "metadata": {},
   "source": [
    "# NOW the exercise for you\n",
    "\n",
    "Take the code from day1 and incorporate it here, to build a website summarizer that uses Llama 3.2 running locally instead of OpenAI; use either of the above approaches."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6de38216-6d1c-48c4-877b-86d403f4e0f8",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}