Spaces:
Sleeping
Sleeping
File size: 8,706 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
{
"cells": [
{
"cell_type": "markdown",
"id": "a15135e6-3ba5-44ae-b14b-dc67674a5ca3",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"# Resarch Paper Summarizer by Name"
]
},
{
"cell_type": "markdown",
"id": "a50f02ea-0f04-4f68-ae66-d1369780065e",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"### Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea6e09ac-adee-4bb8-b3bd-4f6411495751",
"metadata": {},
"outputs": [],
"source": [
"## If dependencies do not exist please install them\n",
"# !pip install python-dotenv openai arxiv"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e5301f2b-3037-4a85-b7cd-5e6bd700418a",
"metadata": {},
"outputs": [],
"source": [
"import arxiv\n",
"import os\n",
"from openai import OpenAI\n",
"from dotenv import load_dotenv\n",
"from IPython.display import Markdown, display"
]
},
{
"cell_type": "markdown",
"id": "ac45a1f4-0005-4e0a-be90-741182c1db9f",
"metadata": {},
"source": [
"### Load Open AI Key"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "381bef97-6bb7-4bdc-a71d-2ea65c8f6964",
"metadata": {},
"outputs": [],
"source": [
"load_dotenv()\n",
"api_key = os.getenv(\"OPENAI_API_KEY\")\n",
"\n",
"if not api_key:\n",
" print(\"β No OpenAI API key found in .env file.\")\n",
"else:\n",
" print(\"β
API key loaded successfully.\")\n",
"\n",
"# β
Initialize OpenAI\n",
"openai = OpenAI(api_key=api_key)"
]
},
{
"cell_type": "markdown",
"id": "00817dbe-209e-418c-bb46-7b6b866fdff4",
"metadata": {},
"source": [
"### Main Class MLResearchFetcher"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7355ba4c-ef61-4934-bb79-4d80b4473e52",
"metadata": {},
"outputs": [],
"source": [
"class MLResearchFetcher:\n",
" def __init__(self, system_prompt, query=\"machine learning\", max_results=5):\n",
" self.query = query\n",
" self.max_results = max_results\n",
" self.system_prompt = system_prompt\n",
"\n",
" def fetch_papers(self):\n",
" search = arxiv.Search(\n",
" query=f'ti:\"{self.query}\"',\n",
" max_results=self.max_results,\n",
" sort_by=arxiv.SortCriterion.SubmittedDate,\n",
" sort_order=arxiv.SortOrder.Descending,\n",
" )\n",
" return list(search.results())\n",
"\n",
" def summarize_abstract(self, abstract, system_prompt):\n",
" try:\n",
" completion = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": abstract}\n",
" ]\n",
" )\n",
" return completion.choices[0].message.content.strip()\n",
" except Exception as e:\n",
" return f\"β Error during summarization: {e}\"\n",
"\n",
" def display_results(self):\n",
" papers = self.fetch_papers()\n",
" for paper in papers:\n",
" display(Markdown(f\"### π [{paper.title}]({paper.entry_id})\"))\n",
" display(Markdown(f\"**Authors:** {', '.join(author.name for author in paper.authors)}\"))\n",
" display(Markdown(f\"**Published:** {paper.published.date()}\"))\n",
" display(Markdown(f\"**Abstract:** {paper.summary.strip()}\"))\n",
" summary = self.summarize_abstract(paper.summary, self.system_prompt)\n",
" display(Markdown(f\"**π Summary:** {summary}\"))\n",
" display(Markdown(\"---\"))"
]
},
{
"cell_type": "markdown",
"id": "304857ba-e832-42a3-8219-ec9202e41509",
"metadata": {},
"source": [
"### Helper Functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1be2a2da-135b-4aec-b200-dc364d319ac4",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"You are an expert research paper summarizer and AI research assistant. \\\n",
"When provided with the URL or content of a research paper in the field of machine learning, artificial intelligence, or data science, perform the following: \\\n",
"1. **Extract and present** the following details in a clear, structured Markdown format: \\\n",
" - Title and Author(s) \\\n",
" - Year of Publication \\\n",
" - Objective or Aim of the Research (Why the study was conducted) \\\n",
" - Background or Introduction (What foundational knowledge or motivation led to this work) \\\n",
" - Type of Research (e.g., empirical study, theoretical analysis, experimental benchmark) \\\n",
" - Methods or Methodology (How the research was conducted: dataset, models, techniques used) \\\n",
" - Results and Key Findings (What was discovered or proven) \\\n",
" - Conclusion (Summary of insights, limitations, and proposed future work) \\\n",
"\\\n",
"2. **Evaluate** the impact and relevance of the paper: \\\n",
" - Assess the significance of the research to the broader ML/AI community \\\n",
" - Note any novelty, performance improvements, or theoretical breakthroughs \\\n",
" - Comment on the potential applications or industry relevance \\\n",
"\\\n",
"3. **Suggest new research directions**: \\\n",
" - Identify gaps, limitations, or unexplored ideas in the paper \\\n",
" - Propose at least one new research idea or follow-up paper that builds upon this work \\\n",
"\\\n",
"Respond in a clean, professional Markdown format suitable for researchers or students reviewing the literature.\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f8b68134-c265-4272-87c4-e16fc205e7c4",
"metadata": {},
"outputs": [],
"source": [
"def print_papers(papers):\n",
" for paper in papers:\n",
" title = paper.title\n",
" authors = \", \".join(author.name for author in paper.authors)\n",
" published = paper.published.strftime('%Y-%m-%d')\n",
" abstract = paper.summary.strip()\n",
" link = paper.entry_id\n",
" pdf_link = [l.href for l in paper.links if l.title == 'pdf']\n",
" categories = \", \".join(paper.categories)\n",
"\n",
" print(f\"\\nπ Title: {title}\")\n",
" print(f\"π₯ Authors: {authors}\")\n",
" print(f\"π
Published: {published}\")\n",
" print(f\"π·οΈ Categories: {categories}\")\n",
" print(f\"π Link: {link}\")\n",
" if pdf_link:\n",
" print(f\"π PDF: {pdf_link[0]}\")\n",
" print(f\"\\nπ Abstract:\\n{abstract}\")\n",
" print(\"-\" * 80)\n"
]
},
{
"cell_type": "markdown",
"id": "9e688bbd-d3dd-4f2b-a7c3-d6e550ec9667",
"metadata": {},
"source": [
"#### Get the papers given the name of the paper"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6dcf9639-d6b5-4194-b6a2-5260329fcbe7",
"metadata": {},
"outputs": [],
"source": [
"fetcher = MLResearchFetcher(system_prompt, query=\"QWEN2 TECHNICAL REPORT\", max_results=3)\n",
"papers = fetcher.fetch_papers()\n",
"print_papers(papers)"
]
},
{
"cell_type": "markdown",
"id": "a04e219b-389f-4e0a-9645-662d966d4055",
"metadata": {},
"source": [
"### Call the model and get the results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "297e915b-078a-49c7-836f-3c4ddf8e17dc",
"metadata": {},
"outputs": [],
"source": [
"fetcher.display_results()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2344499c-3b39-4497-a0bf-1cff83117fdc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|