Spaces:
Sleeping
Sleeping
File size: 6,056 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 208,
"id": "f61139a1-40e1-4273-b9a6-5a0a9d63a9bd",
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"import json\n",
"from reportlab.lib.pagesizes import letter\n",
"from reportlab.pdfgen import canvas\n",
"from IPython.display import display, FileLink\n",
"from IPython.display import display, HTML, FileLink\n",
"from reportlab.lib.pagesizes import A4"
]
},
{
"cell_type": "code",
"execution_count": 80,
"id": "e0858b96-fd41-4911-a333-814e4ed23279",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting reportlab\n",
" Downloading reportlab-4.2.5-py3-none-any.whl.metadata (1.5 kB)\n",
"Requirement already satisfied: pillow>=9.0.0 in c:\\users\\legion\\anaconda3\\envs\\to_do_list\\lib\\site-packages (from reportlab) (11.0.0)\n",
"Collecting chardet (from reportlab)\n",
" Downloading chardet-5.2.0-py3-none-any.whl.metadata (3.4 kB)\n",
"Downloading reportlab-4.2.5-py3-none-any.whl (1.9 MB)\n",
" ---------------------------------------- 0.0/1.9 MB ? eta -:--:--\n",
" ---------------- ----------------------- 0.8/1.9 MB 6.7 MB/s eta 0:00:01\n",
" ---------------------------------------- 1.9/1.9 MB 11.9 MB/s eta 0:00:00\n",
"Downloading chardet-5.2.0-py3-none-any.whl (199 kB)\n",
"Installing collected packages: chardet, reportlab\n",
"Successfully installed chardet-5.2.0 reportlab-4.2.5\n"
]
}
],
"source": [
"!pip install reportlab"
]
},
{
"cell_type": "code",
"execution_count": 220,
"id": "62cc9d37-c801-4e8a-ad2c-7b1450725a10",
"metadata": {},
"outputs": [],
"source": [
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
"HEADERS = {\"Content-Type\":\"application/json\"}\n",
"MODEL = \"llama3.2\""
]
},
{
"cell_type": "code",
"execution_count": 249,
"id": "525a81e7-30f8-4db7-bc8d-29948195bd4f",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"\"\"You are a to-do list generator. Based on the user's input, you will create a clear and descriptive to-do\n",
"list using bullet points. Only generate the to-do list as bullet points with some explaination and time fraame only if asked for and nothing else. \n",
"Be a little descriptive.\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 315,
"id": "7fca3303-3add-468a-a6bd-be7a4d72c811",
"metadata": {},
"outputs": [],
"source": [
"def generate_to_do_list(task_description):\n",
" payload = {\n",
" \"model\": MODEL,\n",
" \"messages\": [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": task_description}\n",
" ],\n",
" \"stream\": False\n",
" }\n",
"\n",
" response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n",
"\n",
" if response.status_code == 200:\n",
" try:\n",
" json_response = response.json()\n",
" to_do_list = json_response.get(\"message\", {}).get(\"content\", \"No to-do list found.\")\n",
" \n",
" formatted_output = \"Your To-Do List:\\n\\n\" + to_do_list\n",
" file_name = \"to_do_list.txt\"\n",
" \n",
" with open(file_name, \"w\", encoding=\"utf-8\") as file:\n",
" file.write(formatted_output)\n",
"\n",
" return file_name\n",
" \n",
" except Exception as e:\n",
" return f\"Error parsing JSON: {e}\"\n",
" else:\n",
" return f\"Error: {response.status_code} - {response.text}\""
]
},
{
"cell_type": "code",
"execution_count": 316,
"id": "d45d6c7e-0e89-413e-8f30-e4975ea6d043",
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter the task description of the to-do list: Give me a 4-week to-do list plan for a wedding reception party.\n"
]
}
],
"source": [
"task_description = input(\"Enter the task description of the to-do list:\")"
]
},
{
"cell_type": "code",
"execution_count": 317,
"id": "5493da44-e254-4d06-b973-a8069c2fc625",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"result = generate_to_do_list(task_description)"
]
},
{
"cell_type": "code",
"execution_count": 318,
"id": "5e95c722-ce1a-4630-b21a-1e00e7ba6ab9",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<p>You can download your to-do list by clicking the link below:</p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<a href='to_do_list.txt' target='_blank'>to_do_list.txt</a><br>"
],
"text/plain": [
"C:\\Users\\Legion\\to-do list using ollama\\to_do_list.txt"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(HTML(\"<p>You can download your to-do list by clicking the link below:</p>\"))\n",
"display(FileLink(result))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f3d0a44e-bca4-4944-8593-1761c2f73a70",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|