Spaces:
Sleeping
Sleeping
File size: 7,193 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
{
"cells": [
{
"cell_type": "markdown",
"id": "306f1a67-4f1c-4aed-8f80-2a8458a1bce5",
"metadata": {},
"source": [
"# Stock data analysis"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4e2a9393-7767-488e-a8bf-27c12dca35bd",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"from dotenv import load_dotenv\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display\n",
"from openai import OpenAI\n",
"\n",
"# If you get an error running this cell, then please head over to the troubleshooting notebook!"
]
},
{
"cell_type": "markdown",
"id": "6900b2a8-6384-4316-8aaa-5e519fca4254",
"metadata": {},
"source": [
"# Connecting to OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7b87cadb-d513-4303-baee-a37b6f938e4d",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"# Check the key\n",
"\n",
"if not api_key:\n",
" print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
"elif not api_key.startswith(\"sk-proj-\"):\n",
" print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
"elif api_key.strip() != api_key:\n",
" print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
"else:\n",
" print(\"API key found and looks good so far!\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "019974d9-f3ad-4a8a-b5f9-0a3719aea2d3",
"metadata": {},
"outputs": [],
"source": [
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "51d42a08-188e-4c56-9578-47cd549bd1d8",
"metadata": {},
"outputs": [],
"source": [
"from urllib.parse import urlencode\n",
"import datetime\n",
"\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "682eff74-55c4-4d4b-b267-703edbc293c7",
"metadata": {},
"outputs": [],
"source": [
"class YahooFinanceWebsite:\n",
" def __init__(self, stock_symbol):\n",
" \"\"\"\n",
" Create this Website object from the given url using the BeautifulSoup library\n",
" \"\"\"\n",
" self.stock_symbol = stock_symbol.upper()\n",
"\n",
" def __build_url(self, params):\n",
" base_url = f\"https://finance.yahoo.com/quote/{self.stock_symbol}/history/\"\n",
" query_string = urlencode(params)\n",
" return f\"{base_url}?{query_string}\"\n",
"\n",
" def get_stock_data(self):\n",
" datetime_now = datetime.datetime.now()\n",
" datetime_year_ago = datetime_now - datetime.timedelta(days=365)\n",
" params = {\"frequency\": \"1wk\", \"period1\": datetime_year_ago.timestamp(), \"period2\": datetime_now.timestamp()}\n",
" url = self.__build_url(params)\n",
" response = requests.get(url, headers=headers)\n",
"\n",
" soup = BeautifulSoup(response.content, 'html.parser')\n",
" \n",
" title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
"\n",
" html_table_data = soup.find(\"table\")\n",
"\n",
" return title, html_table_data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "70b8d7e7-51e7-4392-9b85-9ac9f67a907c",
"metadata": {},
"outputs": [],
"source": [
"def build_stock_analysis_prompt(stock_symbol, title, stock_table_data):\n",
" sys_prompt = r\"\"\"You are an assistant that analyzes the contents of HTML formated table that contains data on a specific stock.\n",
" The HTML table contains the date, open price, close price, low and highs aggregated for every week over one year timeframe.\n",
" Ignoring text, tags or html attributes that might be navigation related. \n",
" Respond in Markdown format\"\"\"\n",
" \n",
" user_prompt = f\"The data provided below in the HTML table format for {stock_symbol} from the Yahoo Finances.\\\n",
" Make the explaination easy enough for a newbie to understand. \\\n",
" Analyze and Summarize the trends on this stock:\\n{stock_table_data}\\n\\n\\\n",
" Also, calculate the total returns in percentage one could have expected over this period.\"\n",
" \n",
" return [\n",
" {\"role\": \"system\", \"content\": sys_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de514421-4cc8-4881-85b4-97f03e94c589",
"metadata": {},
"outputs": [],
"source": [
"def analyze_stock_trends(stock_symbol):\n",
" stock_data_page = YahooFinanceWebsite(stock_symbol)\n",
" title, stock_table_data = stock_data_page.get_stock_data()\n",
" response = openai.chat.completions.create(\n",
" model = \"gpt-4o-mini\",\n",
" messages = build_stock_analysis_prompt(stock_symbol, title, stock_table_data)\n",
" )\n",
" return response.choices[0].message.content\n",
"\n",
"def display_analysis(stock_symbol):\n",
" display(Markdown(analyze_stock_trends(stock_symbol)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "41acc36f-484a-4257-a240-cf27520e7396",
"metadata": {},
"outputs": [],
"source": [
"display_analysis(\"GOOG\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7e09541f-bbc4-4cf3-a1ef-9ed5e1b718e4",
"metadata": {},
"outputs": [],
"source": [
"display_analysis(\"PFE\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e6af9395-0c5c-4265-a309-baba786bfa71",
"metadata": {},
"outputs": [],
"source": [
"display_analysis(\"AAPL\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "afe4f6d1-a6ea-44b5-81ae-8e756cfc0d84",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|