File size: 7,193 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "306f1a67-4f1c-4aed-8f80-2a8458a1bce5",
   "metadata": {},
   "source": [
    "# Stock data analysis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4e2a9393-7767-488e-a8bf-27c12dca35bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import requests\n",
    "from dotenv import load_dotenv\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display\n",
    "from openai import OpenAI\n",
    "\n",
    "# If you get an error running this cell, then please head over to the troubleshooting notebook!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6900b2a8-6384-4316-8aaa-5e519fca4254",
   "metadata": {},
   "source": [
    "# Connecting to OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7b87cadb-d513-4303-baee-a37b6f938e4d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "\n",
    "load_dotenv(override=True)\n",
    "api_key = os.getenv('OPENAI_API_KEY')\n",
    "\n",
    "# Check the key\n",
    "\n",
    "if not api_key:\n",
    "    print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
    "elif not api_key.startswith(\"sk-proj-\"):\n",
    "    print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
    "elif api_key.strip() != api_key:\n",
    "    print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
    "else:\n",
    "    print(\"API key found and looks good so far!\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "019974d9-f3ad-4a8a-b5f9-0a3719aea2d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "51d42a08-188e-4c56-9578-47cd549bd1d8",
   "metadata": {},
   "outputs": [],
   "source": [
    "from urllib.parse import urlencode\n",
    "import datetime\n",
    "\n",
    "headers = {\n",
    " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "682eff74-55c4-4d4b-b267-703edbc293c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "class YahooFinanceWebsite:\n",
    "    def __init__(self, stock_symbol):\n",
    "        \"\"\"\n",
    "        Create this Website object from the given url using the BeautifulSoup library\n",
    "        \"\"\"\n",
    "        self.stock_symbol = stock_symbol.upper()\n",
    "\n",
    "    def __build_url(self, params):\n",
    "        base_url = f\"https://finance.yahoo.com/quote/{self.stock_symbol}/history/\"\n",
    "        query_string = urlencode(params)\n",
    "        return f\"{base_url}?{query_string}\"\n",
    "\n",
    "    def get_stock_data(self):\n",
    "        datetime_now = datetime.datetime.now()\n",
    "        datetime_year_ago = datetime_now - datetime.timedelta(days=365)\n",
    "        params = {\"frequency\": \"1wk\", \"period1\": datetime_year_ago.timestamp(), \"period2\": datetime_now.timestamp()}\n",
    "        url = self.__build_url(params)\n",
    "        response = requests.get(url, headers=headers)\n",
    "\n",
    "        soup = BeautifulSoup(response.content, 'html.parser')\n",
    "        \n",
    "        title = soup.title.string if soup.title else \"No title found\"\n",
    "        for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "            irrelevant.decompose()\n",
    "\n",
    "        html_table_data = soup.find(\"table\")\n",
    "\n",
    "        return title, html_table_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "70b8d7e7-51e7-4392-9b85-9ac9f67a907c",
   "metadata": {},
   "outputs": [],
   "source": [
    "def build_stock_analysis_prompt(stock_symbol, title, stock_table_data):\n",
    "    sys_prompt = r\"\"\"You are an assistant that analyzes the contents of HTML formated table that contains data on a specific stock.\n",
    "    The HTML table contains the date, open price, close price, low and highs aggregated for every week over one year timeframe.\n",
    "    Ignoring text, tags or html attributes that might be navigation related. \n",
    "    Respond in Markdown format\"\"\"\n",
    "    \n",
    "    user_prompt = f\"The data provided below in the HTML table format for {stock_symbol} from the Yahoo Finances.\\\n",
    "    Make the explaination easy enough for a newbie to understand. \\\n",
    "    Analyze and Summarize the trends on this stock:\\n{stock_table_data}\\n\\n\\\n",
    "    Also, calculate the total returns in percentage one could have expected over this period.\"\n",
    "    \n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": sys_prompt},\n",
    "        {\"role\": \"user\", \"content\": user_prompt}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "de514421-4cc8-4881-85b4-97f03e94c589",
   "metadata": {},
   "outputs": [],
   "source": [
    "def analyze_stock_trends(stock_symbol):\n",
    "    stock_data_page = YahooFinanceWebsite(stock_symbol)\n",
    "    title, stock_table_data = stock_data_page.get_stock_data()\n",
    "    response = openai.chat.completions.create(\n",
    "        model = \"gpt-4o-mini\",\n",
    "        messages = build_stock_analysis_prompt(stock_symbol, title, stock_table_data)\n",
    "    )\n",
    "    return response.choices[0].message.content\n",
    "\n",
    "def display_analysis(stock_symbol):\n",
    "    display(Markdown(analyze_stock_trends(stock_symbol)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "41acc36f-484a-4257-a240-cf27520e7396",
   "metadata": {},
   "outputs": [],
   "source": [
    "display_analysis(\"GOOG\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7e09541f-bbc4-4cf3-a1ef-9ed5e1b718e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "display_analysis(\"PFE\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6af9395-0c5c-4265-a309-baba786bfa71",
   "metadata": {},
   "outputs": [],
   "source": [
    "display_analysis(\"AAPL\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "afe4f6d1-a6ea-44b5-81ae-8e756cfc0d84",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}