Spaces:
Sleeping
Sleeping
File size: 16,456 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
{
"cells": [
{
"cell_type": "markdown",
"id": "603cd418-504a-4b4d-b1c3-be04febf3e79",
"metadata": {},
"source": [
"# Article Title Generator (V2)\n",
"\n",
"Summarization use-case in which the user provides an article, which the LLM will analyze to suggest an SEO-optimized title.\n",
"\n",
"**NOTES**:\n",
"\n",
"1. This version supports website scrapping using Selenium (based on the code from **/week1/community-\n",
" contributions/day1-webscraping-selenium-for-javascript.ipynb** - Thanks for the contribution!)\n",
"2. Leverage streaming (OpenAI only).\n",
"3. The following models were configured:\\\n",
" \n",
" a. OpenAI gpt-4o-mini\\\n",
" b. Llama llama3.2\\\n",
" c. Deepseek deepseek-r1:1.5b\\\n",
"\n",
" It is possible to configure additional models by adding the new model to the MODELS dictionary and its\n",
" initialization to the CLIENTS dictionary. Then, call the model with --> ***answer =\n",
" get_answer('NEW_MODEL')***.\n",
"5. Improved system_prompt to provide specific SEO best practices to adopt during the title generation.\n",
"6. Rephrased the system_prompt to ensure the model provides a single Title (not a list of suggestions).\n",
"7. Includes function to remove unrequired thinking/reasoning verbose from the model response (Deepseek). \n",
"8. Users are encouraged to assess and rank the suggested titles using any headline analyzer tool online.\n",
" Example: https://www.isitwp.com/headline-analyzer/. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "115004a8-747a-4954-9580-1ed548f80336",
"metadata": {},
"outputs": [],
"source": [
"# install required libraries if they were not part of the requirements.txt\n",
"!pip install selenium\n",
"!pip install undetected-chromedriver"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e773daa6-d05e-49bf-ad8e-a8ed4882b77e",
"metadata": {},
"outputs": [],
"source": [
"# confirming Llama is loaded\n",
"!ollama pull llama3.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "279b0c00-9bb0-4c7f-9c6d-aa0b108274b9",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI\n",
"import undetected_chromedriver as uc\n",
"from selenium.webdriver.common.by import By\n",
"from selenium.webdriver.support.ui import WebDriverWait\n",
"from selenium.webdriver.support import expected_conditions as EC\n",
"import time\n",
"from bs4 import BeautifulSoup"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4730d8d-3e20-4f3c-a4ff-ed2ac0a8aa27",
"metadata": {},
"outputs": [],
"source": [
"# set environment variables for OpenAi\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"# validate API Key\n",
"if not api_key:\n",
" raise ValueError(\"No API key was found! Please check the .env file.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1abbb826-de66-498c-94d8-33369ad01885",
"metadata": {},
"outputs": [],
"source": [
"# constants\n",
"MODELS = { 'GPT': 'gpt-4o-mini', \n",
" 'LLAMA': 'llama3.2', \n",
" 'DEEPSEEK': 'deepseek-r1:1.5b'\n",
" }\n",
"\n",
"CLIENTS = { 'GPT': OpenAI(), \n",
" 'LLAMA': OpenAI(base_url='http://localhost:11434/v1', api_key='ollama'),\n",
" 'DEEPSEEK': OpenAI(base_url='http://localhost:11434/v1', api_key='ollama') \n",
" }\n",
"\n",
"# path to Chrome\n",
"CHROME_PATH = \"C:/Program Files/Google/Chrome/Application/chrome.exe\""
]
},
{
"cell_type": "markdown",
"id": "6f490fe4-32d5-41f3-890d-ecf4e5e01dd4",
"metadata": {},
"source": [
"**Webcrawler** (based on the code from __/week1/community-contributions/day1-webscraping-selenium-for-javascript.ipynb__)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2a1cf7a-044f-4a9c-b76e-8f112d384550",
"metadata": {},
"outputs": [],
"source": [
"class WebsiteCrawler:\n",
" def __init__(self, url, wait_time=20, chrome_path=None):\n",
" \"\"\"\n",
" Initialize the WebsiteCrawler using Selenium to scrape JavaScript-rendered content.\n",
" \"\"\"\n",
" self.url = url\n",
" self.wait_time = wait_time\n",
"\n",
" options = uc.ChromeOptions()\n",
" options.add_argument(\"--disable-gpu\")\n",
" options.add_argument(\"--no-sandbox\")\n",
" options.add_argument(\"--disable-dev-shm-usage\")\n",
" options.add_argument(\"--disable-blink-features=AutomationControlled\")\n",
" # options.add_argument(\"--headless=new\") # For Chrome >= 109 - unreliable on my end!\n",
" options.add_argument(\"start-maximized\")\n",
" options.add_argument(\n",
" \"user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
" )\n",
" if chrome_path:\n",
" options.binary_location = chrome_path\n",
"\n",
" self.driver = uc.Chrome(options=options)\n",
"\n",
" try:\n",
" # Load the URL\n",
" self.driver.get(url)\n",
"\n",
" # Wait for Cloudflare or similar checks\n",
" time.sleep(10)\n",
"\n",
" # Ensure the main content is loaded\n",
" WebDriverWait(self.driver, self.wait_time).until(\n",
" EC.presence_of_element_located((By.TAG_NAME, \"main\"))\n",
" )\n",
"\n",
" # Extract the main content\n",
" main_content = self.driver.find_element(By.CSS_SELECTOR, \"main\").get_attribute(\"outerHTML\")\n",
"\n",
" # Parse with BeautifulSoup\n",
" soup = BeautifulSoup(main_content, \"html.parser\")\n",
" self.title = self.driver.title if self.driver.title else \"No title found\"\n",
" self.text = soup.get_text(separator=\"\\n\", strip=True)\n",
"\n",
" except Exception as e:\n",
" print(f\"Error occurred: {e}\")\n",
" self.title = \"Error occurred\"\n",
" self.text = \"\"\n",
"\n",
" finally:\n",
" self.driver.quit()\n"
]
},
{
"cell_type": "markdown",
"id": "592d8f86-fbf7-4b16-a69d-468030d72dc4",
"metadata": {},
"source": [
"### Prompts"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1914afad-dbd8-4c1f-8e68-80b0e5d743a9",
"metadata": {},
"outputs": [],
"source": [
"# system prompt\n",
"system_prompt = \"\"\"\n",
" You are an experienced SEO-focused copywriter. The user will provide an article, and your task is to analyze its content and generate a single, most effective, keyword-optimized title to maximize SEO performance.\n",
"\n",
"Instructions:\n",
"Ignore irrelevant content, such as the current title (if any), navigation menus, advertisements, or unrelated text.\n",
"Prioritize SEO best practices, considering:\n",
"Keyword relevance and search intent (informational, transactional, etc.).\n",
"Readability and engagement.\n",
"Avoiding keyword stuffing.\n",
"Ensure conciseness and clarity, keeping the title under 60 characters when possible for optimal SERP display.\n",
"Use a compelling structure that balances informativeness and engagement, leveraging formats like:\n",
"Listicles (\"10 Best Strategies for…\")\n",
"How-to guides (\"How to Boost…\")\n",
"Questions (\"What Is the Best Way to…\")\n",
"Power words to enhance click-through rates (e.g., \"Proven,\" \"Ultimate,\" \"Essential\").\n",
"Provide only one single, best title—do not suggest multiple options.\n",
"Limit the answer to the following Response Format (Markdown):\n",
"Optimized Title: [Provide only one title here]\n",
"Justification: [Explain why this title is effective for SEO]\n",
"\n",
" \"\"\""
]
},
{
"cell_type": "markdown",
"id": "b0486867-6d38-4cb5-91d4-fb60952c3a9b",
"metadata": {},
"source": [
"**Provide the article URL and get its content for analysis**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddd76319-13ce-480b-baa7-cab6a5c88168",
"metadata": {},
"outputs": [],
"source": [
"# article url - change to any other article URL\n",
"article_url = \"https://searchengineland.com/seo-trends-2025-447745\"\n",
"\n",
"# get article content\n",
"article = WebsiteCrawler(url=article_url, chrome_path=CHROME_PATH)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "176cfac7-5e6d-4d4a-a1c4-1b63b60de1f7",
"metadata": {},
"outputs": [],
"source": [
"# user prompt\n",
"user_prompt = \"\"\"\n",
"Following the article to be analyzed to suggest a title. Limit the answer to the following Response Format (Markdown): \n",
"Optimized Title: [Provide only one title here]\n",
"Justification: [Explain why this title is effective for SEO].\n",
"\"\"\"\n",
"\n",
"user_prompt = f\"{user_prompt} {article}\"\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c45fc7d7-08c9-4e34-b427-b928a219bb94",
"metadata": {},
"outputs": [],
"source": [
"# message list\n",
"messages = [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f67b881f-1040-4cf7-82c5-e85f4c0bd252",
"metadata": {},
"outputs": [],
"source": [
"# get suggested title\n",
"def get_title(model, **kwargs):\n",
" # stream if GPT\n",
" if 'stream' in kwargs:\n",
" response = CLIENTS[model].chat.completions.create(\n",
" model=MODELS[model],\n",
" messages=messages,\n",
" stream=kwargs['stream']\n",
" )\n",
" else:\n",
" response = CLIENTS[model].chat.completions.create(\n",
" model=MODELS[model],\n",
" messages=messages,\n",
" )\n",
"\n",
" return response\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8988d6ff-076a-4eae-baf4-26a8d6a2bc44",
"metadata": {},
"outputs": [],
"source": [
"# filter response from model verbose - like Deepseek reasoning/thinking verbose\n",
"def filter_response(response):\n",
" # Find last occurrence of 'Optimized Title:' to avoid displaying reasoning verbose\n",
" substring = 'Optimized Title:'\n",
" start = response.rfind('Optimized Title:')\n",
" if start > -1:\n",
" filtered_response = response[start:]\n",
"\n",
" # insert line break to preserve format\n",
" filtered_response = filtered_response.replace(\"**Justification:**\", \"\\n**Justification:**\")\n",
" \n",
" return filtered_response"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e9e99cf-5e25-4a1f-ab11-a2255e318671",
"metadata": {},
"outputs": [],
"source": [
"# display suggested title\n",
"def display_title(model):\n",
" # get model-suggested title\n",
" title = get_title(model)\n",
" \n",
" display(Markdown(f\"### {model} (___{MODELS[model]}___) Answer\\n\\n_______\")) \n",
"\n",
" response = \"\"\n",
"\n",
" if model == 'GPT':\n",
" display_handle = display(Markdown(\"\"), display_id=True)\n",
" # for chunk in stream:\n",
" for chunk in get_title(model=model, stream=True):\n",
" response += chunk.choices[0].delta.content or ''\n",
" response = (\n",
" response.replace(\"```\",\"\")\n",
" .replace(\"markdown\", \"\")\n",
" .replace(\"Optimized Title:\", \"**Optimized Title:**\")\n",
" .replace(\"Justification:\", \"**Justification:**\")\n",
" )\n",
" update_display(Markdown(response), display_id=display_handle.display_id)\n",
" else:\n",
" response = get_title(model=model)\n",
" response = response.choices[0].message.content\n",
" response = filter_response(response)\n",
" response = (\n",
" response.replace(\"Optimized Title:\", \"**Optimized Title:**\")\n",
" .replace(\"Justification:\", \"**Justification:**\")\n",
" )\n",
" display(Markdown(response))"
]
},
{
"cell_type": "markdown",
"id": "947b42ed-5b43-486d-8af3-e5b671c1fd0e",
"metadata": {},
"source": [
"### Get OpenAI Suggested Title"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eb6f66e3-ab99-4f76-9358-896cb43c1fa1",
"metadata": {},
"outputs": [],
"source": [
"# get and display openAi suggested title\n",
"display_title(model='GPT')"
]
},
{
"cell_type": "markdown",
"id": "70073ebf-a00a-416b-854d-642d450cd99b",
"metadata": {},
"source": [
"### Get Llama Suggested Title"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "caa190bb-de5f-45cc-b671-5d62688f7b25",
"metadata": {},
"outputs": [],
"source": [
"# get and display Llama suggested title\n",
"display_title(model='LLAMA')"
]
},
{
"cell_type": "markdown",
"id": "811edc4f-20e2-482d-ac89-fae9d1b70bed",
"metadata": {},
"source": [
"### Get Deepseek Suggested Title"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "082628e4-ff4c-46dd-ae5f-76578eb017ad",
"metadata": {},
"outputs": [],
"source": [
"# get and display Deepseek title\n",
"display_title(model='DEEPSEEK')"
]
},
{
"cell_type": "markdown",
"id": "7fc404a6-3a91-4c09-89de-867d3d69b4b2",
"metadata": {
"jp-MarkdownHeadingCollapsed": true
},
"source": [
"### Observations\n",
"\n",
"1. **Selenium:** The headless option (__options.add_argument(\"--headless=new\")__), while ideal to speed up the scanning process, presented problems while scanning several websites (including openai.com and canva.com).\n",
"2. **Deepseek challenges:**\\\n",
" a.It always returns its thinking/reasoning verbose, which, while helpful to understand how it works, is not always\n",
" required, such as in this example code. A new function (**filter_response**) was created to remove the additional verbose.\\\n",
" b. It is unreliable with the response, sometimes returning the required format for the response instead of the\n",
" actual response. For example, for the title, it may sometimes return:\n",
" \n",
" **Optimized Title:** \\[The user wants the suggested title here]\n",
" \n",
"### Suggested future improvements\n",
"\n",
"1. Add the logic that would allow each model to assess the recommendations from the different models and \n",
" select the best among these.\n",
"2. Add the logic to leverage an API (if available) that automatically assesses the suggested titles."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1af8260b-5ba1-4eeb-acd0-02de537b1bf4",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|