File size: 16,456 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "603cd418-504a-4b4d-b1c3-be04febf3e79",
   "metadata": {},
   "source": [
    "# Article Title Generator (V2)\n",
    "\n",
    "Summarization use-case in which the user provides an article, which the LLM will analyze to suggest an SEO-optimized title.\n",
    "\n",
    "**NOTES**:\n",
    "\n",
    "1. This version supports website scrapping using Selenium (based on the code from **/week1/community-\n",
    "   contributions/day1-webscraping-selenium-for-javascript.ipynb** - Thanks for the contribution!)\n",
    "2. Leverage streaming (OpenAI only).\n",
    "3. The following models were configured:\\\n",
    "   \n",
    "    a. OpenAI gpt-4o-mini\\\n",
    "    b. Llama llama3.2\\\n",
    "    c. Deepseek deepseek-r1:1.5b\\\n",
    "\n",
    "   It is possible to configure additional models by adding the new model to the MODELS dictionary and its\n",
    "   initialization to the CLIENTS dictionary. Then, call the model with --> ***answer =\n",
    "   get_answer('NEW_MODEL')***.\n",
    "5. Improved system_prompt to provide specific SEO best practices to adopt during the title generation.\n",
    "6. Rephrased the system_prompt to ensure the model provides a single Title (not a list of suggestions).\n",
    "7. Includes function to remove unrequired thinking/reasoning verbose from the model response (Deepseek). \n",
    "8. Users are encouraged to assess and rank the suggested titles using any headline analyzer tool online.\n",
    "   Example: https://www.isitwp.com/headline-analyzer/. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "115004a8-747a-4954-9580-1ed548f80336",
   "metadata": {},
   "outputs": [],
   "source": [
    "# install required libraries if they were not part of the requirements.txt\n",
    "!pip install selenium\n",
    "!pip install undetected-chromedriver"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e773daa6-d05e-49bf-ad8e-a8ed4882b77e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# confirming Llama is loaded\n",
    "!ollama pull llama3.2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "279b0c00-9bb0-4c7f-9c6d-aa0b108274b9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from IPython.display import Markdown, display, update_display\n",
    "from openai import OpenAI\n",
    "import undetected_chromedriver as uc\n",
    "from selenium.webdriver.common.by import By\n",
    "from selenium.webdriver.support.ui import WebDriverWait\n",
    "from selenium.webdriver.support import expected_conditions as EC\n",
    "import time\n",
    "from bs4 import BeautifulSoup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d4730d8d-3e20-4f3c-a4ff-ed2ac0a8aa27",
   "metadata": {},
   "outputs": [],
   "source": [
    "# set environment variables for OpenAi\n",
    "load_dotenv(override=True)\n",
    "api_key = os.getenv('OPENAI_API_KEY')\n",
    "\n",
    "# validate API Key\n",
    "if not api_key:\n",
    "    raise ValueError(\"No API key was found! Please check the .env file.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1abbb826-de66-498c-94d8-33369ad01885",
   "metadata": {},
   "outputs": [],
   "source": [
    "# constants\n",
    "MODELS = { 'GPT': 'gpt-4o-mini', \n",
    "          'LLAMA': 'llama3.2', \n",
    "          'DEEPSEEK': 'deepseek-r1:1.5b'\n",
    "         }\n",
    "\n",
    "CLIENTS = { 'GPT': OpenAI(), \n",
    "            'LLAMA': OpenAI(base_url='http://localhost:11434/v1', api_key='ollama'),\n",
    "            'DEEPSEEK': OpenAI(base_url='http://localhost:11434/v1', api_key='ollama') \n",
    "          }\n",
    "\n",
    "# path to Chrome\n",
    "CHROME_PATH = \"C:/Program Files/Google/Chrome/Application/chrome.exe\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6f490fe4-32d5-41f3-890d-ecf4e5e01dd4",
   "metadata": {},
   "source": [
    "**Webcrawler** (based on the code from __/week1/community-contributions/day1-webscraping-selenium-for-javascript.ipynb__)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c2a1cf7a-044f-4a9c-b76e-8f112d384550",
   "metadata": {},
   "outputs": [],
   "source": [
    "class WebsiteCrawler:\n",
    "    def __init__(self, url, wait_time=20, chrome_path=None):\n",
    "        \"\"\"\n",
    "        Initialize the WebsiteCrawler using Selenium to scrape JavaScript-rendered content.\n",
    "        \"\"\"\n",
    "        self.url = url\n",
    "        self.wait_time = wait_time\n",
    "\n",
    "        options = uc.ChromeOptions()\n",
    "        options.add_argument(\"--disable-gpu\")\n",
    "        options.add_argument(\"--no-sandbox\")\n",
    "        options.add_argument(\"--disable-dev-shm-usage\")\n",
    "        options.add_argument(\"--disable-blink-features=AutomationControlled\")\n",
    "        # options.add_argument(\"--headless=new\") # For Chrome >= 109 - unreliable on my end!\n",
    "        options.add_argument(\"start-maximized\")\n",
    "        options.add_argument(\n",
    "            \"user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
    "        )\n",
    "        if chrome_path:\n",
    "            options.binary_location = chrome_path\n",
    "\n",
    "        self.driver = uc.Chrome(options=options)\n",
    "\n",
    "        try:\n",
    "            # Load the URL\n",
    "            self.driver.get(url)\n",
    "\n",
    "            # Wait for Cloudflare or similar checks\n",
    "            time.sleep(10)\n",
    "\n",
    "            # Ensure the main content is loaded\n",
    "            WebDriverWait(self.driver, self.wait_time).until(\n",
    "                EC.presence_of_element_located((By.TAG_NAME, \"main\"))\n",
    "            )\n",
    "\n",
    "            # Extract the main content\n",
    "            main_content = self.driver.find_element(By.CSS_SELECTOR, \"main\").get_attribute(\"outerHTML\")\n",
    "\n",
    "            # Parse with BeautifulSoup\n",
    "            soup = BeautifulSoup(main_content, \"html.parser\")\n",
    "            self.title = self.driver.title if self.driver.title else \"No title found\"\n",
    "            self.text = soup.get_text(separator=\"\\n\", strip=True)\n",
    "\n",
    "        except Exception as e:\n",
    "            print(f\"Error occurred: {e}\")\n",
    "            self.title = \"Error occurred\"\n",
    "            self.text = \"\"\n",
    "\n",
    "        finally:\n",
    "            self.driver.quit()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "592d8f86-fbf7-4b16-a69d-468030d72dc4",
   "metadata": {},
   "source": [
    "### Prompts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1914afad-dbd8-4c1f-8e68-80b0e5d743a9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# system prompt\n",
    "system_prompt = \"\"\"\n",
    "    You are an experienced SEO-focused copywriter. The user will provide an article, and your task is to analyze its content and generate a single, most effective, keyword-optimized title to maximize SEO performance.\n",
    "\n",
    "Instructions:\n",
    "Ignore irrelevant content, such as the current title (if any), navigation menus, advertisements, or unrelated text.\n",
    "Prioritize SEO best practices, considering:\n",
    "Keyword relevance and search intent (informational, transactional, etc.).\n",
    "Readability and engagement.\n",
    "Avoiding keyword stuffing.\n",
    "Ensure conciseness and clarity, keeping the title under 60 characters when possible for optimal SERP display.\n",
    "Use a compelling structure that balances informativeness and engagement, leveraging formats like:\n",
    "Listicles (\"10 Best Strategies for…\")\n",
    "How-to guides (\"How to Boost…\")\n",
    "Questions (\"What Is the Best Way to…\")\n",
    "Power words to enhance click-through rates (e.g., \"Proven,\" \"Ultimate,\" \"Essential\").\n",
    "Provide only one single, best title—do not suggest multiple options.\n",
    "Limit the answer to the following Response Format (Markdown):\n",
    "Optimized Title: [Provide only one title here]\n",
    "Justification: [Explain why this title is effective for SEO]\n",
    "\n",
    "    \"\"\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b0486867-6d38-4cb5-91d4-fb60952c3a9b",
   "metadata": {},
   "source": [
    "**Provide the article URL and get its content for analysis**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ddd76319-13ce-480b-baa7-cab6a5c88168",
   "metadata": {},
   "outputs": [],
   "source": [
    "# article url - change to any other article URL\n",
    "article_url = \"https://searchengineland.com/seo-trends-2025-447745\"\n",
    "\n",
    "# get article content\n",
    "article = WebsiteCrawler(url=article_url, chrome_path=CHROME_PATH)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "176cfac7-5e6d-4d4a-a1c4-1b63b60de1f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# user prompt\n",
    "user_prompt = \"\"\"\n",
    "Following the article to be analyzed to suggest a title. Limit the answer to the following Response Format (Markdown): \n",
    "Optimized Title: [Provide only one title here]\n",
    "Justification: [Explain why this title is effective for SEO].\n",
    "\"\"\"\n",
    "\n",
    "user_prompt = f\"{user_prompt} {article}\"\n",
    "                "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c45fc7d7-08c9-4e34-b427-b928a219bb94",
   "metadata": {},
   "outputs": [],
   "source": [
    "# message list\n",
    "messages = [\n",
    "            {\"role\": \"system\", \"content\": system_prompt},\n",
    "            {\"role\": \"user\", \"content\": user_prompt}\n",
    "           ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f67b881f-1040-4cf7-82c5-e85f4c0bd252",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get suggested title\n",
    "def get_title(model, **kwargs):\n",
    "    # stream if GPT\n",
    "    if 'stream' in kwargs:\n",
    "        response = CLIENTS[model].chat.completions.create(\n",
    "                model=MODELS[model],\n",
    "                messages=messages,\n",
    "                stream=kwargs['stream']\n",
    "            )\n",
    "    else:\n",
    "        response = CLIENTS[model].chat.completions.create(\n",
    "                model=MODELS[model],\n",
    "                messages=messages,\n",
    "            )\n",
    "\n",
    "    return response\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8988d6ff-076a-4eae-baf4-26a8d6a2bc44",
   "metadata": {},
   "outputs": [],
   "source": [
    "# filter response from model verbose - like Deepseek reasoning/thinking verbose\n",
    "def filter_response(response):\n",
    "    # Find last occurrence of 'Optimized Title:' to avoid displaying reasoning verbose\n",
    "    substring = 'Optimized Title:'\n",
    "    start = response.rfind('Optimized Title:')\n",
    "    if start > -1:\n",
    "        filtered_response = response[start:]\n",
    "\n",
    "    # insert line break to preserve format\n",
    "    filtered_response = filtered_response.replace(\"**Justification:**\", \"\\n**Justification:**\")\n",
    "    \n",
    "    return filtered_response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0e9e99cf-5e25-4a1f-ab11-a2255e318671",
   "metadata": {},
   "outputs": [],
   "source": [
    "# display suggested title\n",
    "def display_title(model):\n",
    "    # get model-suggested title\n",
    "    title = get_title(model)\n",
    "    \n",
    "    display(Markdown(f\"### {model} (___{MODELS[model]}___) Answer\\n\\n_______\")) \n",
    "\n",
    "    response = \"\"\n",
    "\n",
    "    if model == 'GPT':\n",
    "        display_handle = display(Markdown(\"\"), display_id=True)\n",
    "        # for chunk in stream:\n",
    "        for chunk in get_title(model=model, stream=True):\n",
    "            response += chunk.choices[0].delta.content or ''\n",
    "            response = (\n",
    "                response.replace(\"```\",\"\")\n",
    "                .replace(\"markdown\", \"\")\n",
    "                .replace(\"Optimized Title:\", \"**Optimized Title:**\")\n",
    "                .replace(\"Justification:\", \"**Justification:**\")\n",
    "            )\n",
    "            update_display(Markdown(response), display_id=display_handle.display_id)\n",
    "    else:\n",
    "        response = get_title(model=model)\n",
    "        response = response.choices[0].message.content\n",
    "        response = filter_response(response)\n",
    "        response = (\n",
    "            response.replace(\"Optimized Title:\", \"**Optimized Title:**\")\n",
    "            .replace(\"Justification:\", \"**Justification:**\")\n",
    "        )\n",
    "        display(Markdown(response))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "947b42ed-5b43-486d-8af3-e5b671c1fd0e",
   "metadata": {},
   "source": [
    "### Get OpenAI Suggested Title"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eb6f66e3-ab99-4f76-9358-896cb43c1fa1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get and display openAi suggested title\n",
    "display_title(model='GPT')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "70073ebf-a00a-416b-854d-642d450cd99b",
   "metadata": {},
   "source": [
    "### Get Llama Suggested Title"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "caa190bb-de5f-45cc-b671-5d62688f7b25",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get and display Llama suggested title\n",
    "display_title(model='LLAMA')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "811edc4f-20e2-482d-ac89-fae9d1b70bed",
   "metadata": {},
   "source": [
    "### Get Deepseek Suggested Title"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "082628e4-ff4c-46dd-ae5f-76578eb017ad",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get and display Deepseek title\n",
    "display_title(model='DEEPSEEK')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7fc404a6-3a91-4c09-89de-867d3d69b4b2",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true
   },
   "source": [
    "### Observations\n",
    "\n",
    "1. **Selenium:** The headless option (__options.add_argument(\"--headless=new\")__), while ideal to speed up the scanning process, presented problems while scanning several websites (including openai.com and canva.com).\n",
    "2. **Deepseek challenges:**\\\n",
    "   a.It always returns its thinking/reasoning verbose, which, while helpful to understand how it works, is not always\n",
    "      required, such as in this example code. A new function (**filter_response**) was created to remove the additional verbose.\\\n",
    "   b. It is unreliable with the response, sometimes returning the required format for the response instead of the\n",
    "      actual response. For example, for the title, it may sometimes return:\n",
    "   \n",
    "   **Optimized Title:** \\[The user wants the suggested title here]\n",
    "    \n",
    "### Suggested future improvements\n",
    "\n",
    "1. Add the logic that would allow each model to assess the recommendations from the different models and \n",
    "   select the best among these.\n",
    "2. Add the logic to leverage an API (if available) that automatically assesses the suggested titles."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1af8260b-5ba1-4eeb-acd0-02de537b1bf4",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}