File size: 14,219 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
{
 "cells": [
  {
   "cell_type": "raw",
   "id": "f64407a0-fda5-48f3-a2d3-82e80d320931",
   "metadata": {},
   "source": [
    "### \"Career Well-Being Companion\" ###\n",
    "This project will gather feelings at the end of day from employee.\n",
    "Based on employee feelings provided as input, model will analyze feelings and provide suggestions and acknowledge with feelings employtee is going thru.\n",
    "Model even will ask employee \"Do you want more detailed resposne to cope up with your feelings?\".\n",
    "If employee agrees, model even replies with online courses, tools, meetups and other ideas for the well being of the employee.\n",
    "\n",
    "Immediate Impact: Professionals can quickly see value through insights or actionable suggestions.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2b30a8fa-1067-4369-82fc-edb197551e43",
   "metadata": {},
   "outputs": [],
   "source": [
    "### Step 1: Emotional Check-in:\n",
    "\n",
    "# Input: User describes their feelings or workday.\n",
    "# LLM Task: Analyze the input for emotional tone and identify keywords (e.g., \"stress,\" \"boredom\").\n",
    "# Output: A summary of emotional trends.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2b52469e-da81-42ec-9e6c-0c121ad349a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(\"I am your well being companion and end goal is to help you in your career.\\nI want to start by asking about your feelings, how was your day today.\\n\")\n",
    "print(\"I will do my best as well being companion to analyze your day and come up with the suggestions that might help you in your career and life. \\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a6df2e2c-785d-4323-90f4-b49592ab33fc",
   "metadata": {},
   "outputs": [],
   "source": [
    "how_was_day = \"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "247e4a80-f634-4a7a-9f40-315f042be59c",
   "metadata": {},
   "outputs": [],
   "source": [
    "how_was_day = input(\"How was your day today,can you describe about your day, what went well, what did not go well, what you did not like :\\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0faac2dd-0d53-431a-87a7-d57a6881e043",
   "metadata": {},
   "outputs": [],
   "source": [
    "what_went_well = input(\"What went well for you , today?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2c11628b-d14b-47eb-a97e-70d08ddf3364",
   "metadata": {},
   "outputs": [],
   "source": [
    "what_went_bad = input(\"What did not go well, today?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f64e34b4-f83a-4ae4-86bb-5bd164121412",
   "metadata": {},
   "outputs": [],
   "source": [
    "how_was_day = how_was_day + what_went_well + what_went_bad\n",
    "print(how_was_day)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c5fe08c4-4d21-4917-a556-89648eb543c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from openai import OpenAI\n",
    "from dotenv import load_dotenv\n",
    "import json\n",
    "from IPython.display import Markdown, display, update_display"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6875d51-f33b-462e-85cb-a5d6a7cfb86e",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Initialize environment and constants:\n",
    "load_dotenv(override=True)\n",
    "\n",
    "api_key = os.getenv('OPENAI_API_KEY')\n",
    "if api_key and api_key.startswith('sk-proj-') and len(api_key)>10:\n",
    "    print(\"API key looks good so far\")\n",
    "else:\n",
    "    print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")\n",
    "    \n",
    "MODEL = 'gpt-4o-mini'\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c12cf934-4bd4-4849-9e8f-5bb89eece996",
   "metadata": {},
   "outputs": [],
   "source": [
    "### Step 2: From day spent and what went good, what went bad  => LLM will extract feelings, emotions from those unspoken words :)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "237d14b3-571e-4598-a57b-d3ebeaf81afc",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt_for_emotion_check_in = \"You are a career well-being assistant. Your task is to analyze the user's emotional state based on their text input.\"\\\n",
    "\"Look for signs of stress, burnout, dissatisfaction, boredom, motivation, or any other emotional indicators related to work.\"\\\n",
    "\"Based on the input, provide a summary of the user's feelings and categorize them under relevant emotional states (e.g., ‘Burnout,’ ‘Boredom,’ ‘Stress,’ ‘Satisfaction,’ etc.).\"\\\n",
    "\"Your response should be empathetic and non-judgmental. Please summarize the list of feelings, emotions , those unspoken but unheard feelings you get it.\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a205a6d3-b0d7-4fcb-9eed-f3a86576cd9f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_feelings(how_was_day):\n",
    "    response = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages = [\n",
    "            {'role':'system','content': system_prompt_for_emotion_check_in},\n",
    "            {'role':'user', 'content': how_was_day}\n",
    "        ]\n",
    "    )\n",
    "    result = response.choices[0].message.content\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45e152c8-37c4-4818-a8a0-49f1ea3c1b65",
   "metadata": {},
   "outputs": [],
   "source": [
    "## LLM will give the feelings you have based on \"the day you had today\".\n",
    "print(get_feelings(how_was_day))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a62a385-4c51-42b1-ad73-73949e740e66",
   "metadata": {},
   "outputs": [],
   "source": [
    "### Step 3: From those feelings, emotions ==> Get suggestions from LLM."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d856ca4f-ade9-4e6f-b540-2d07a70867c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "## Lets construct system prompt for LLM to get suggestions (from these feelings above).\n",
    "\n",
    "system_prompt_for_suggestion =\"You are a career well-being assistant.Provide a list of practical,actionable suggestions to help them improve their emotional state.\"\n",
    "\n",
    "system_prompt_for_suggestion+=\"The suggestions should be personalized based on their current feelings, and they should be simple, effective actions the user can take immediately.\"\\\n",
    "\"Include activities, tasks, habits, or approaches that will either alleviate stress, boost motivation, or help them reconnect with their work in a positive way.\"\\\n",
    "\"Be empathetic, non-judgmental, and encouraging in your tone.\\n\"\n",
    "system_prompt_for_suggestion += \"Request you to respond in JSON format. Below is example:\\n\"\n",
    "system_prompt_for_suggestion += '''\n",
    "{\n",
    "  \"suggestions\": [\n",
    "    {\n",
    "      \"action\": \"Take a short break\",\n",
    "      \"description\": \"Step away from your workspace for 5-10 minutes. Use this time to take deep breaths, stretch, or grab a drink. This mini-break can help clear your mind and reduce feelings of overwhelm.\"\n",
    "    },\n",
    "    {\n",
    "      \"action\": \"Write a quick journal entry\",\n",
    "      \"description\": \"Spend 5-10 minutes writing down your thoughts and feelings. Specify what's distracting you and what you appreciate about your personal life. This can help you process emotions and refocus on tasks.\"\n",
    "    },\n",
    "    {\n",
    "      \"action\": \"Set a small task goal\",\n",
    "      \"description\": \"Choose one manageable task to complete today. Break it down into smaller steps to make it less daunting. Completing even a small task can give you a sense of achievement and boost motivation.\"\n",
    "    }\n",
    "    ]\n",
    "}\n",
    "'''\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e9eee380-7fa5-4d21-9357-f4fc34d3368d",
   "metadata": {},
   "outputs": [],
   "source": [
    "##  Lets build user prompt to ask LLM for the suggestions based on the feelings above.\n",
    "## Note: Here while building user_prompt, we are making another LLM call (via function get_feelings() to get feelings analyzed from \"day spent\".\n",
    "## Because first step is to get feelings from day spent then we move to offer suggestions to ease discomfort feelings.\n",
    "\n",
    "def get_user_prompt_for_suggestion(how_was_day):\n",
    "    user_prompt_for_suggestion = \"You are a career well-being assistant.Please see below user’s emotional input on 'day user had spent' and this user input might have feeling burnt out, bored, uninspired, or stressed or sometime opposite \"\\\n",
    "    \"of these feelings.\"\n",
    "    user_prompt_for_suggestion += f\"{get_feelings(how_was_day)}\"\n",
    "    return user_prompt_for_suggestion\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3576e451-b29c-44e1-bcdb-addc8d61afa7",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(get_user_prompt_for_suggestion(how_was_day))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a41ee40-1f49-4474-809f-a0d5e44e4aa4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_suggestions(how_was_day):\n",
    "    response = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages = [\n",
    "            {'role': 'system', 'content':system_prompt_for_suggestion},\n",
    "            {'role': 'user', 'content': get_user_prompt_for_suggestion(how_was_day)}\n",
    "        ],\n",
    "        response_format={\"type\": \"json_object\"}\n",
    "    )\n",
    "    result = response.choices[0].message.content\n",
    "    return json.loads(result)\n",
    "    #display(Markdown(result))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "33e3a14e-0e2c-43cb-b50b-d6df52b4d300",
   "metadata": {},
   "outputs": [],
   "source": [
    "suggestions = get_suggestions(how_was_day)\n",
    "print(suggestions)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "31c75e04-2800-4ba2-845b-bc38f8965622",
   "metadata": {},
   "outputs": [],
   "source": [
    "### Step 4: From those suggestions from companion ==> Enhance with support you need to follow sugestions like action plan for your self."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d07f9d3f-5acf-4a86-9160-4c6de8df4eb0",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt_for_enhanced_suggestions = \"You are a helpful assistant that enhances actionable suggestions for users. For each suggestion provided, enhance it by adding:\\n\"\\\n",
    "\"1. A step-by-step guide for implementation.\"\\\n",
    "\"2. Tools, resources, or apps that can help.\"\\\n",
    "\"3. Examples or additional context to make the suggestion practical.\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6ab449f1-7a6c-4982-99e0-83d99c45ad2d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_user_prompt_for_enhanced_suggestions(suggestions):\n",
    "     prompt = \"You are able to check below suggestions and can enhance to help end user. Below is the list of suggestions.\\n\"\n",
    "     prompt += f\"{suggestions}\"\n",
    "     return prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d5187b7a-d8cd-4377-b011-7805bd50443d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def enhance_suggestions(suggestions):\n",
    "    stream = openai.chat.completions.create(\n",
    "        model = MODEL,\n",
    "        messages=[\n",
    "            {'role':'system', 'content':system_prompt_for_enhanced_suggestions},\n",
    "            {'role':'user', 'content':get_user_prompt_for_enhanced_suggestions(suggestions)}\n",
    "        ],\n",
    "        stream = True\n",
    "    )\n",
    "    \n",
    "    #result = response.choices[0].message.content\n",
    "    #for chunk in stream:\n",
    "    #    print(chunk.choices[0].delta.content or '', end='')\n",
    "\n",
    "    response = \"\"\n",
    "    display_handle = display(Markdown(\"\"), display_id=True)\n",
    "    for chunk in stream:\n",
    "        response += chunk.choices[0].delta.content or ''\n",
    "        response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
    "        update_display(Markdown(response), display_id=display_handle.display_id)\n",
    "    \n",
    "    #display(Markdown(result))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "429cd6f8-3215-4140-9a6d-82d14a9b9798",
   "metadata": {},
   "outputs": [],
   "source": [
    "detailed = input(\"\\nWould you like a DETAILED PLAN for implementing this suggestion?(Yes/ No)\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5efda045-5bde-4c51-bec6-95b5914102dd",
   "metadata": {},
   "outputs": [],
   "source": [
    "if detailed.lower() == 'yes':\n",
    "    enhance_suggestions(suggestions)\n",
    "else:\n",
    "    print(suggestions)\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1969b2ec-c850-4dfc-b790-8ae8e3fa36e9",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}