File size: 6,453 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "9964872b-225d-4ced-93e4-fc5b279ec2ed",
   "metadata": {},
   "source": [
    "# Webpage English summarizer with user inputs (url, ollama-based LLM) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4e49d399-d18c-4c91-8abc-cf3289e11e2f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import requests\n",
    "# from dotenv import load_dotenv\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display\n",
    "from openai import OpenAI\n",
    "import ollama, time\n",
    "from tqdm import tqdm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "46e7d809-248d-41b8-80e1-36b210041581",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define system prompt.\n",
    "\n",
    "system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
    "and provides a detailed summary, ignoring text that might be navigation related. \\\n",
    "Respond in markdown, in English.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8bf237f-591f-4c32-9415-5d5d4e2522b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A function that writes a User Prompt that asks for summaries of websites:\n",
    "\n",
    "def user_prompt_for(website):\n",
    "    user_prompt = f\"You are looking at a website titled {website.title}\"\n",
    "    user_prompt += \"\\nThe contents of this website is as follows; \\\n",
    "please provide a detailed summary of this website in markdown. \\\n",
    "If it includes news or announcements, then summarize these too.\\n\\n\"\n",
    "    user_prompt += website.text\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7d39ee6d-c670-41ba-a0b8-debd55bda8e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# See how this function creates exactly the format above\n",
    "\n",
    "def messages_for(website):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_prompt},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "43e28ff5-2def-4a47-acdd-2e06c0666956",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Constants\n",
    "\n",
    "OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
    "HEADERS = {\"Content-Type\": \"application/json\"}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "32f4f481-81a3-479d-817b-4e754d9af46d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "# If you're not familiar with Classes, check out the \"Intermediate Python\" notebook\n",
    "\n",
    "# Some websites need you to use proper headers when fetching them:\n",
    "headers = HEADERS\n",
    "\n",
    "class Website:\n",
    "\n",
    "    def __init__(self, url):\n",
    "        \"\"\"\n",
    "        Create this Website object from the given url using the BeautifulSoup library\n",
    "        \"\"\"\n",
    "        self.url = url\n",
    "        response = requests.get(url, headers=headers)\n",
    "        soup = BeautifulSoup(response.content, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "            irrelevant.decompose()\n",
    "        self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f81cfd17-8208-4192-a59f-485ff3ea74e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now: call the ollama API wrapper and return the relevant component of the response\n",
    "\n",
    "def summarize(url):\n",
    "    website = Website(url)\n",
    "    response = ollama.chat(\n",
    "        model=MODEL,\n",
    "        messages = messages_for(website)\n",
    "    )\n",
    "    return response['message']['content']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7a9eedc6-2183-473d-84ca-b10d40e2a1e6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Ask the user the name of the url address\n",
    "\n",
    "url= str(input(\"\"\"\n",
    "Please provide a valid url address:\n",
    "https://\"\"\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5d012de2-0ef2-43db-9f51-fc7f989c3642",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Ask the user to select a valid model\n",
    "\n",
    "MODEL= str(input(\"\"\"\n",
    "Please select a LLM:\n",
    "(examples: llama3.2, deepseek-r1:1.5b)\n",
    "\"\"\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1ac8c02e-4a62-448b-a231-8c6f65891811",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's just make sure the model is loaded\n",
    "\n",
    "!ollama pull {MODEL}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0544541f-11a8-4eb7-8eb6-bc032ed6d0d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "print('url: https://{0}\\nModel= {1}'.format(url, MODEL))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45518950-f2c9-43af-b897-4fe8fe48dfd8",
   "metadata": {},
   "outputs": [],
   "source": [
    "summary = summarize('https://'+ url)\n",
    "for summ in tqdm(summary):\n",
    "    time.sleep(0.01)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "02c0c15e-216d-47c7-843d-ac27af02820b",
   "metadata": {},
   "outputs": [],
   "source": [
    "display(Markdown(summary))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "985a3689-5827-4b15-b8d5-276f9b292afd",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}