File size: 5,363 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "fef36918-109d-41e3-8603-75ff81b42379",
   "metadata": {},
   "source": [
    "# Solution for exercise day 2 - slight modification: model is a parameter also - display_summary(\"deepseek-r1:1.5b\",\"https://yoururl\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b50349ac-93ea-496b-ae20-bd72a93bb138",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import requests\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "edd073c7-8444-4a0d-b84e-4b2ed0ee7f35",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Constants\n",
    "OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
    "HEADERS = {\"Content-Type\": \"application/json\"}\n",
    "#MODEL = \"llama3.2\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2e3a6e1a-e4c7-4448-9852-1b6ba2bd8d66",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "# Some websites need you to use proper headers when fetching them:\n",
    "headers = {\n",
    " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
    "}\n",
    "\n",
    "class Website:\n",
    "\n",
    "    def __init__(self, url):\n",
    "        \"\"\"\n",
    "        Create this Website object from the given url using the BeautifulSoup library\n",
    "        \"\"\"\n",
    "        self.url = url\n",
    "        response = requests.get(url, headers=headers)\n",
    "        soup = BeautifulSoup(response.content, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "            irrelevant.decompose()\n",
    "        self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ae3752ca-3a97-4d6a-ac84-5b75ebfb50ed",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the system prompt \n",
    "system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
    "and provides a short summary, ignoring text that might be navigation related. \\\n",
    "Respond in markdown.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "48b5240f-7617-4e51-a320-cba9650bec84",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A function that writes a User Prompt that asks for summaries of websites:\n",
    "\n",
    "def user_prompt_for(website):\n",
    "    user_prompt = f\"You are looking at a website titled {website.title}\"\n",
    "    user_prompt += \"\\nThe contents of this website is as follows; \\\n",
    "please provide a short summary of this website in markdown. \\\n",
    "If it includes news or announcements, then summarize these too.\\n\\n\"\n",
    "    user_prompt += website.text\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6f7d84f0-60f2-4cbf-b4d1-173a79fe3380",
   "metadata": {},
   "outputs": [],
   "source": [
    "def messages_for(website):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_prompt},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "25520a31-c857-4ed5-86da-50dfe5fab7bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "def summarize(model,url):\n",
    "    website = Website(url)\n",
    "    payload = {\n",
    "        \"model\": model,\n",
    "        \"messages\": messages_for(website),\n",
    "        \"stream\": False\n",
    "    }\n",
    "    response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n",
    "    return response.json()['message']['content']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "430776ed-8516-43a9-8a22-618d9080f2e1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A function to display this nicely in the Jupyter output, using markdown\n",
    "def display_summary(model,url):\n",
    "    summary = summarize(model,url)\n",
    "    display(Markdown(summary))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b2b05c1f-e4a2-4f65-bd6d-634d72e38b6e",
   "metadata": {},
   "outputs": [],
   "source": [
    "#!ollama pull deepseek-r1:1.5b"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "01513f8a-15b7-4053-bfe4-44b36e5494d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "display_summary(\"deepseek-r1:1.5b\",\"https://www.ipma.pt\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}