Spaces:
Sleeping
Sleeping
File size: 24,361 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
# tickers is a list of stock tickers
import tickers
# prices is a dict; the key is a ticker and the value is a list of historic prices, today first
import prices
# Trade represents a decision to buy or sell a quantity of a ticker
import Trade
import random
import numpy as np
def trade2():
# Buy the stock with the highest price today
ticker = max(prices, key=lambda t: prices[t][0]) # Find ticker with highest price
return [Trade(ticker, random.randrange(1, 10))] # Buy a small quantity
def trade3():
# Sell the stock with the lowest price today
ticker = min(prices, key=lambda t: prices[t][0])
return [Trade(ticker, random.randrange(-10, -1))]
def trade4():
# Buy the stock with the largest percent increase today
changes = {t: (prices[t][0] - prices[t][1]) / prices[t][1] for t in prices}
ticker = max(changes, key=changes.get)
return [Trade(ticker, random.randrange(1, 10))]
def trade5():
# Sell the stock with the largest percent decrease today
changes = {t: (prices[t][0] - prices[t][1]) / prices[t][1] for t in prices}
ticker = min(changes, key=changes.get)
return [Trade(ticker, random.randrange(-10, -1))]
def trade6():
# Buy the 3 stocks with the highest moving average over the last 5 days
mvgs = {t: np.mean(prices[t][:5]) for t in prices}
top_tickers = sorted(mvgs, key=mvgs.get, reverse=True)[:3]
return [Trade(t, random.randrange(1, 5)) for t in top_tickers]
def trade7():
# Sell the 3 stocks with the lowest moving average over the last 5 days
mvgs = {t: np.mean(prices[t][:5]) for t in prices}
bottom_tickers = sorted(mvgs, key=mvgs.get)[:3]
return [Trade(t, random.randrange(-5, -1)) for t in bottom_tickers]
def trade8():
# Randomly buy or sell a single stock based on a coin flip
ticker = random.choice(tickers)
action = random.choice([-1, 1]) # -1 for sell, 1 for buy
return [Trade(ticker, action * random.randrange(1, 10))]
def trade9():
# Diversify: Buy a small amount of 5 random stocks
chosen_tickers = random.sample(tickers, 5)
return [Trade(t, random.randrange(1, 3)) for t in chosen_tickers]
def trade10():
# Follow the trend: If the market is up today, buy, else sell
market_change = (prices[tickers[0]][0] - prices[tickers[0]][1]) / prices[tickers[0]][1]
action = 1 if market_change > 0 else -1
ticker = random.choice(tickers)
return [Trade(ticker, action * random.randrange(1, 10))]
def trade11():
# Mean Reversion: Buy the 2 stocks that fell the most yesterday, hoping they rebound
yesterday_changes = {t: (prices[t][1] - prices[t][2]) / prices[t][2] for t in prices}
bottom_tickers = sorted(yesterday_changes, key=yesterday_changes.get)[:2]
return [Trade(t, random.randrange(1, 5)) for t in bottom_tickers]
def trade12():
# Momentum: Short the 2 stocks that rose the most yesterday, expecting a pullback
yesterday_changes = {t: (prices[t][1] - prices[t][2]) / prices[t][2] for t in prices}
top_tickers = sorted(yesterday_changes, key=yesterday_changes.get, reverse=True)[:2]
return [Trade(t, random.randrange(-5, -1)) for t in top_tickers]
def trade13():
# Pairs Trading: Long one stock, short another with a similar price history
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
return [Trade(tickers[i], 1), Trade(tickers[j], -1)]
def trade14():
# Relative Strength: Go long on the strongest stock, short the weakest
performances = {t: (prices[t][0] - prices[t][-1]) / prices[t][-1] for t in prices}
strongest = max(performances, key=performances.get)
weakest = min(performances, key=performances.get)
return [Trade(strongest, 1), Trade(weakest, -1)]
def trade15():
# Calendar Spread: Buy this month's option, sell next month's (same strike
# This is a simplified representation, as actual option trading is more complex
ticker = random.choice(tickers)
return [Trade(f"{ticker}_OPT_THIS_MONTH", 1), Trade(f"{ticker}_OPT_NEXT_MONTH", -1)]
def trade16():
# Straddle: Buy both a call and put option on the same stock (same strike
ticker = random.choice(tickers)
strike = prices[ticker][0] # Use the current price as a simple strike price
return [Trade(f"{ticker}_CALL_{strike}", 1), Trade(f"{ticker}_PUT_{strike}", 1)]
def trade17():
# Breakout: Buy if a stock breaks above its 52-week high
ticker = random.choice(tickers)
if prices[ticker][0] > max(prices[ticker]):
return [Trade(ticker, random.randrange(1, 10))]
else:
return []
def trade18():
# Volatility: If market volatility is high, sell (expecting it to decrease
market_volatility = np.std([prices[t][0] / prices[t][1] for t in tickers])
if market_volatility > 0.05: # You'd adjust this threshold based on your risk tolerance
ticker = random.choice(tickers)
return [Trade(ticker, random.randrange(-10, -1))]
else:
return []
def trade19():
# Golden Cross: Buy if the short-term moving average crosses above the long-term
ticker = random.choice(tickers)
short_ma = np.mean(prices[ticker][:5])
long_ma = np.mean(prices[ticker][:20])
if short_ma > long_ma and short_ma - long_ma < 0.01: # Small margin to avoid false signals
return [Trade(ticker, random.randrange(1, 10))]
else:
return []
def trade20():
# Death Cross: Sell if the short-term moving average crosses below the long-term
ticker = random.choice(tickers)
short_ma = np.mean(prices[ticker][:5])
long_ma = np.mean(prices[ticker][:20])
if short_ma < long_ma and long_ma - short_ma < 0.01:
return [Trade(ticker, random.randrange(-10, -1))]
else:
return []
def trade21():
# Correlated Pairs Buy: Buy a pair of stocks that have historically moved together
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
return [Trade(tickers[i], 1), Trade(tickers[j], 1)]
def trade22():
# Correlated Pairs Sell: Sell a pair of stocks that have historically moved together
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
return [Trade(tickers[i], -1), Trade(tickers[j], -1)]
def trade23():
# Contrarian Pairs Buy: Buy a stock that's down while its correlated pair is up
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
if prices[tickers[i]][0] < prices[tickers[i]][1] and prices[tickers[j]][0] > prices[tickers[j]][1]:
return [Trade(tickers[i], 1)]
else:
return []
def trade24():
# Contrarian Pairs Sell: Sell a stock that's up while its correlated pair is down
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
if prices[tickers[i]][0] > prices[tickers[i]][1] and prices[tickers[j]][0] < prices[tickers[j]][1]:
return [Trade(tickers[i], -1)]
else:
return []
def trade25():
# Correlation Reversal: Buy a stock that's recently become less correlated with the market
# This is a simplified version, you'd likely use a rolling correlation window
market_prices = [prices[t] for t in tickers]
correlations_today = np.corrcoef(market_prices)
correlations_yesterday = np.corrcoef([p[1:] for p in market_prices])
diffs = correlations_today - correlations_yesterday
i, j = np.unravel_index(np.argmin(diffs), diffs.shape)
if i != j: # Ensure we're not comparing a stock to itself
return [Trade(tickers[i], 1)]
else:
return []
def trade26():
# Sector Rotation: Buy the top 2 stocks from the sector that's most correlated with the market
# Assuming you have sector data (e.g., 'sector_map' dict: ticker -> sector)
sector_returns = {s: np.mean([(prices[t][0] - prices[t][1]) / prices[t][1] for t in tickers if sector_map[t] == s]) for s in set(sector_map.values())}
top_sector = max(sector_returns, key=sector_returns.get)
top_tickers_in_sector = sorted([(t, prices[t][0]) for t in tickers if sector_map[t] == top_sector], key=lambda x: x[1], reverse=True)[:2]
return [Trade(t, 1) for t, _ in top_tickers_in_sector]
def trade27():
# Beta-Weighted Portfolio: Allocate more to stocks with higher betas (more volatile
# You'd need historical market data to calculate betas
betas = {t: random.uniform(0.5, 2) for t in tickers} # Placeholder for actual betas
total_beta = sum(betas.values())
allocations = {t: betas[t] / total_beta * 100 for t in tickers}
return [Trade(t, int(allocations[t])) for t in tickers]
def trade28():
# Diversified Portfolio: Buy a mix of stocks with low correlations to each other
correlations = np.corrcoef([prices[t] for t in tickers])
chosen_tickers = []
while len(chosen_tickers) < 5 and len(tickers) > 0:
t = random.choice(tickers)
if all(correlations[tickers.index(t)][tickers.index(c)] < 0.5 for c in chosen_tickers):
chosen_tickers.append(t)
tickers.remove(t)
return [Trade(t, random.randrange(1, 3)) for t in chosen_tickers]
def trade29():
# Cointegration: Find a pair of stocks that are cointegrated and trade their spread
# This requires more complex analysis (e.g., using the Johansen test)
# For simplicity, we'll just pick a random pair and assume cointegration
i, j = random.sample(range(len(tickers)), 2)
spread = prices[tickers[i]][0] - prices[tickers[j]][0]
if spread > 0:
return [Trade(tickers[i], -1), Trade(tickers[j], 1)]
else:
return [Trade(tickers[i], 1), Trade(tickers[j], -1)]
def trade30():
# Basket Trading: Buy or sell a basket of stocks based on their correlation to a benchmark
# You'd need a benchmark ticker and its historical prices
benchmark = "SPY"
correlations = np.corrcoef([prices[t] for t in tickers + [benchmark]])[:-1, -1] # Correlate each stock with the benchmark
if np.mean(correlations) > 0.5:
return [Trade(t, 1) for t in tickers]
else:
return [Trade(t, -1) for t in tickers]
def trade31():
# Double Bottom: Buy when a stock forms a double bottom pattern
ticker = random.choice(tickers)
if prices[ticker][0] < prices[ticker][2] < prices[ticker][4] and prices[ticker][1] > prices[ticker][3]:
return [Trade(ticker, 1)]
else:
return []
def trade32():
# Double Top: Sell when a stock forms a double top pattern
ticker = random.choice(tickers)
if prices[ticker][0] > prices[ticker][2] > prices[ticker][4] and prices[ticker][1] < prices[ticker][3]:
return [Trade(ticker, -1)]
else:
return []
def trade33():
# Head and Shoulders: Sell when a stock forms a head and shoulders pattern
ticker = random.choice(tickers)
if prices[ticker][0] < prices[ticker][2] < prices[ticker][4] and prices[ticker][1] > prices[ticker][3] > prices[ticker][5]:
return [Trade(ticker, -1)]
else:
return []
def trade34
# Inverse Head and Shoulders: Buy when a stock forms an inverse head and shoulders pattern
ticker = random.choice(tickers)
if prices[ticker][0] > prices[ticker][2] > prices[ticker][4] and prices[ticker][1] < prices[ticker][3] < prices[ticker][5]:
return [Trade(ticker, 1)]
else:
return []
def trade35():
# Ascending Triangle: Buy when a stock forms an ascending triangle pattern
ticker = random.choice(tickers)
# Simplified logic: check for higher lows and flat highs
if prices[ticker][0] > prices[ticker][2] > prices[ticker][4] and prices[ticker][1] == prices[ticker][3] == prices[ticker][5]:
return [Trade(ticker, 1)]
else:
return []
def trade36():
# Descending Triangle: Sell when a stock forms a descending triangle pattern
ticker = random.choice(tickers)
# Simplified logic: check for lower highs and flat lows
if prices[ticker][0] < prices[ticker][2] < prices[ticker][4] and prices[ticker][1] == prices[ticker][3] == prices[ticker][5]:
return [Trade(ticker, -1)]
else:
return []
def trade37():
# Flag/Pennant: Buy or sell based on the direction of the flag/pennant pattern
ticker = random.choice(tickers)
# Simplified logic: check for a consolidation period after a strong move
if abs(prices[ticker][0] - np.mean(prices[ticker][1:5])) < 0.05 and abs(prices[ticker][5] - prices[ticker][6]) > 0.1:
# Buy if the prior move was up, sell if down
return [Trade(ticker, 1 if prices[ticker][5] > prices[ticker][6] else -1)]
else:
return []
def trade38():
# Gap Up: Buy when a stock opens significantly higher than its previous close
ticker = random.choice(tickers)
if prices[ticker][0] > prices[ticker][1] * 1.05: # 5% gap up
return [Trade(ticker, 1)]
else:
return []
def trade39():
# Gap Down: Sell when a stock opens significantly lower than its previous close
ticker = random.choice(tickers)
if prices[ticker][0] < prices[ticker][1] * 0.95: # 5% gap down
return [Trade(ticker, -1)]
else:
return []
def trade40():
# Rounding Bottom: Buy when a stock forms a rounding bottom pattern
ticker = random.choice(tickers)
# Simplified logic: check for a gradual price increase after a period of decline
if prices[ticker][0] > prices[ticker][2] > prices[ticker][4] and prices[ticker][1] < prices[ticker][3] < prices[ticker][5]:
return [Trade(ticker, 1)]
else:
return []
def trade41():
# Overbought/Oversold (RSI): Sell if RSI is above 70, buy if below 30
ticker = random.choice(tickers)
rsi = calculate_rsi(prices[ticker], 14) # Assuming you have an RSI calculation function
if rsi > 70:
return [Trade(ticker, -1)]
elif rsi < 30:
return [Trade(ticker, 1)]
else:
return []
def trade42():
# Bollinger Bands Breakout: Buy if price breaks above the upper band, sell if below lower
ticker = random.choice(tickers)
upper, middle, lower = calculate_bollinger_bands(prices[ticker], 20, 2) # Assuming you have a Bollinger Band calculation function
if prices[ticker][0] > upper:
return [Trade(ticker, 1)]
elif prices[ticker][0] < lower:
return [Trade(ticker, -1)]
else:
return []
def trade43():
# Channel Breakout: Buy or sell when price breaks out of a recent price channel
ticker = random.choice(tickers)
highs = [max(prices[ticker][i:i+5]) for i in range(len(prices[ticker]) - 5)]
lows = [min(prices[ticker][i:i+5]) for i in range(len(prices[ticker]) - 5)]
if prices[ticker][0] > highs[-1]:
return [Trade(ticker, 1)]
elif prices[ticker][0] < lows[-1]:
return [Trade(ticker, -1)]
else:
return []
def trade44():
# Trend Following: Buy if the 20-day moving average is rising, sell if falling
ticker = random.choice(tickers)
ma20_today = np.mean(prices[ticker][:20])
ma20_yesterday = np.mean(prices[ticker][1:21])
if ma20_today > ma20_yesterday:
return [Trade(ticker, 1)]
elif ma20_today < ma20_yesterday:
return [Trade(ticker, -1)]
else:
return []
def trade45():
# MACD Crossover: Buy when MACD line crosses above signal line, sell when below
ticker = random.choice(tickers)
macd_line, signal_line = calculate_macd(prices[ticker]) # Assuming you have a MACD calculation function
if macd_line[-1] > signal_line[-1] and macd_line[-2] <= signal_line[-2]:
return [Trade(ticker, 1)]
elif macd_line[-1] < signal_line[-1] and macd_line[-2] >= signal_line[-2]:
return [Trade(ticker, -1)]
else:
return []
def trade46():
# Stochastic Oscillator: Buy if %K crosses above %D in oversold zone, sell if opposite
ticker = random.choice(tickers)
k_line, d_line = calculate_stochastic(prices[ticker]) # Assuming you have a Stochastic calculation function
if k_line[-1] > d_line[-1] and k_line[-1] < 20:
return [Trade(ticker, 1)]
elif k_line[-1] < d_line[-1] and k_line[-1] > 80:
return [Trade(ticker, -1)]
else:
return []
def trade47():
# Volume Spike: Buy if today's volume is much higher than the average
# You'd need volume data for this strategy
ticker = random.choice(tickers)
avg_volume = np.mean(volumes[ticker][1:]) # Assuming you have 'volumes' data
if volumes[ticker][0] > avg_volume * 2:
return [Trade(ticker, 1)]
else:
return []
def trade48():
# Price Spike: Buy if today's price increase is much higher than average daily change
ticker = random.choice(tickers)
daily_changes = [(prices[ticker][i] - prices[ticker][i + 1]) / prices[ticker][i + 1] for i in range(len(prices[ticker]) - 1)]
avg_change = np.mean(daily_changes)
today_change = (prices[ticker][0] - prices[ticker][1]) / prices[ticker][1]
if today_change > avg_change * 2:
return [Trade(ticker, 1)]
else:
return []
def trade49():
# Mean Reversion (Long-term): Buy if the price is below its 200-day moving average
ticker = random.choice(tickers)
ma200 = np.mean(prices[ticker])
if prices[ticker][0] < ma200:
return [Trade(ticker, 1)]
else:
return []
def trade50():
# Trend Reversal (Parabolic SAR): Buy or sell based on the Parabolic SAR indicator
# Assuming you have a Parabolic SAR calculation function
ticker = random.choice(tickers)
sar = calculate_parabolic_sar(prices[ticker])
if prices[ticker][0] > sar[-1]:
return [Trade(ticker, 1)]
elif prices[ticker][0] < sar[-1]:
return [Trade(ticker, -1)]
else:
return []
def trade51():
# Market Outperformance: Buy stocks whose daily returns beat the market
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
outperformers = [t for t in tickers if (prices[t][0] - prices[t][1]) / prices[t][1] > market_return]
if outperformers:
ticker = random.choice(outperformers)
return [Trade(ticker, 1)]
else:
return []
def trade52():
# Market Underperformance: Short stocks whose daily returns lag the market
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
underperformers = [t for t in tickers if (prices[t][0] - prices[t][1]) / prices[t][1] < market_return]
if underperformers:
ticker = random.choice(underperformers)
return [Trade(ticker, -1)]
else:
return []
def trade53():
# Relative Strength to Market: Buy the stock with the highest relative strength to the market
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
relative_strengths = {t: ((prices[t][0] - prices[t][1]) / prices[t][1]) - market_return for t in tickers}
ticker = max(relative_strengths, key=relative_strengths.get)
return [Trade(ticker, 1)]
def trade54():
# Relative Weakness to Market: Short the stock with the lowest relative strength to the market
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
relative_strengths = {t: ((prices[t][0] - prices[t][1]) / prices[t][1]) - market_return for t in tickers}
ticker = min(relative_strengths, key=relative_strengths.get)
return [Trade(ticker, -1)]
def trade55():
# Sector vs. Market: Buy top stock from sector outperforming the market, short from underperforming
# Assuming you have sector data (e.g., 'sector_map' dict: ticker -> sector)
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
sector_returns = {s: np.mean([(prices[t][0] - prices[t][1]) / prices[t][1] for t in tickers if sector_map[t] == s]) for s in set(sector_map.values())}
outperforming_sectors = [s for s in sector_returns if sector_returns[s] > market_return]
underperforming_sectors = [s for s in sector_returns if sector_returns[s] < market_return]
trades = []
if outperforming_sectors:
top_ticker = max([(t, prices[t][0]) for t in tickers if sector_map[t] == random.choice(outperforming_sectors)], key=lambda x: x[1])[0]
trades.append(Trade(top_ticker, 1))
if underperforming_sectors:
bottom_ticker = min([(t, prices[t][0]) for t in tickers if sector_map[t] == random.choice(underperforming_sectors)], key=lambda x: x[1])[0]
trades.append(Trade(bottom_ticker, -1))
return trades
def trade56():
# Market-Neutral Pairs: Long/short pairs of stocks with similar market betas
betas = {t: random.uniform(0.8, 1.2) for t in tickers} # Placeholder, calculate actual betas
pairs = [(t1, t2) for t1 in tickers for t2 in tickers if abs(betas[t1] - betas[t2]) < 0.1 and t1 != t2]
if pairs:
t1, t2 = random.choice(pairs)
return [Trade(t1, 1), Trade(t2, -1)]
else:
return []
def trade57():
# Beta Rotation: Buy high-beta stocks if the market is rising, low-beta if falling
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
betas = {t: random.uniform(0.5, 2) for t in tickers} # Placeholder, calculate actual betas
if market_return > 0: # Market is rising
target_beta = 1.5 # Example target for high-beta
else:
target_beta = 0.8 # Example target for low-beta
closest_ticker = min(tickers, key=lambda t: abs(betas[t] - target_beta))
return [Trade(closest_ticker, 1 if market_return > 0 else -1)] # Buy if rising, short if falling
def trade58():
# Market Timing with Relative Strength: Buy strong stocks in up markets, sell in down markets
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
relative_strengths = {t: ((prices[t][0] - prices[t][-1]) / prices[t][-1]) for t in tickers} # Calculate over a longer period (e.g., 20 days)
if market_return > 0:
strongest = max(relative_strengths, key=relative_strengths.get)
return [Trade(strongest, 1)]
else:
weakest = min(relative_strengths, key=relative_strengths.get)
return [Trade(weakest, -1)]
def trade59():
# Relative Value to Market: Buy stocks trading below their historical average relative to the market
# Requires historical data to calculate averages
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
relative_values = {t: prices[t][0] / total_market_values[0] for t in tickers} # Current relative value
historical_averages = {t: 0.05 for t in tickers} # Placeholder, calculate actual averages
undervalued = [t for t in tickers if relative_values[t] < historical_averages[t] * 0.95] # Allow some buffer
if undervalued:
ticker = random.choice(undervalued)
return [Trade(ticker, 1)]
else:
return []
def trade60():
# Market-Cap Weighted: Allocate trade amounts proportional to each stock's market cap relative to total market
total_market_value = sum(prices[t][0] for t in tickers)
market_caps = {t: prices[t][0] * 1000 for t in tickers} # Assuming 1000 shares outstanding for each stock
weights = {t: market_caps[t] / total_market_value for t in tickers}
total_trade_amount = 100 # Example
trades = [Trade(t, int(weights[t] * total_trade_amount)) for t in tickers]
return trades |