File size: 7,204 Bytes
53d77b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
from flask import Flask, render_template, redirect, url_for, request, flash
from flask_sqlalchemy import SQLAlchemy
from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user
from werkzeug.security import generate_password_hash, check_password_hash
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
import gradio as gr
from threading import Thread
from time import perf_counter
from typing import List
import numpy as np

app = Flask(__name__)
app.config['SECRET_KEY'] = 'your_secret_key'
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.db'
db = SQLAlchemy(app)
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = 'login'

class User(db.Model, UserMixin):
    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(80), unique=True, nullable=False)
    password = db.Column(db.String(120), nullable=False)

    def __repr__(self):
        return '<User %r>' % self.username

# Create the database tables
with app.app_context():
    db.create_all()

@login_manager.user_loader
def load_user(user_id):
    return User.query.get(int(user_id))

@app.route('/', methods=['GET', 'POST'])
def signup():
    if request.method == 'POST':
        username = request.form['username']
        password = request.form['password']
        hashed_password = generate_password_hash(password, method='pbkdf2:sha256')

        new_user = User(username=username, password=hashed_password)
        db.session.add(new_user)
        db.session.commit()
        flash('Signup successful!', 'success')
        return redirect(url_for('login'))

    return render_template('signup.html')

@app.route('/login', methods=['GET', 'POST'])
def login():
    if request.method == 'POST':
        username = request.form['username']
        password = request.form['password']
        user = User.query.filter_by(username=username).first()
        if user and check_password_hash(user.password, password):
            login_user(user)
            return redirect(url_for('dashboard'))
        flash('Invalid username or password', 'danger')

    return render_template('login.html')

@app.route('/dashboard')
@login_required
def dashboard():
    return render_template('dashboard.html', name=current_user.username)

@app.route('/logout')
@login_required
def logout():
    logout_user()
    return redirect(url_for('login'))

# Gradio app integration
model_dir = "C:/Users/KIIT/OneDrive/Desktop/INTEL/phi-2/INT8_compressed_weights"
model_name = "susnato/phi-2"
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
tokenizer = AutoTokenizer.from_pretrained(model_name)
ov_model = OVModelForCausalLM.from_pretrained(model_dir, device="CPU", ov_config=ov_config)

prompt_template = "{instruction}"
end_key_token_id = tokenizer.eos_token_id
pad_token_id = tokenizer.pad_token_id

def estimate_latency(current_time, current_perf_text, new_gen_text, per_token_time, num_tokens):
    num_current_toks = len(tokenizer.encode(new_gen_text))
    num_tokens += num_current_toks
    per_token_time.append(num_current_toks / current_time)
    if len(per_token_time) > 10 and len(per_token_time) % 4 == 0:
        current_bucket = per_token_time[:-10]
        return f"Average generation speed: {np.mean(current_bucket):.2f} tokens/s. Total generated tokens: {num_tokens}", num_tokens
    return current_perf_text, num_tokens

def run_generation(user_text, top_p, temperature, top_k, max_new_tokens, perf_text):
    prompt_text = prompt_template.format(instruction=user_text)
    model_inputs = tokenizer(prompt_text, return_tensors="pt")

    streamer = gr.utils.TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        temperature=temperature,
        top_k=top_k,
        eos_token_id=end_key_token_id,
        pad_token_id=pad_token_id,
    )
    t = Thread(target=ov_model.generate, kwargs=generate_kwargs)
    t.start()

    model_output = ""
    per_token_time = []
    num_tokens = 0
    start = perf_counter()
    for new_text in streamer:
        current_time = perf_counter() - start
        model_output += new_text
        perf_text, num_tokens = estimate_latency(current_time, perf_text, new_text, per_token_time, num_tokens)
        yield model_output, perf_text
        start = perf_counter()
    return model_output, perf_text

def reset_textbox(instruction, response, perf):
    return "", "", ""

examples = [
    "Give me a recipe for pizza with pineapple",
    "Write me a tweet about the new OpenVINO release",
    "Explain the difference between CPU and GPU",
    "Give five ideas for a great weekend with family",
    "Do Androids dream of Electric sheep?",
    "Who is Dolly?",
    "Please give me advice on how to write resume?",
    "Name 3 advantages to being a cat",
    "Write instructions on how to become a good AI engineer",
    "Write a love letter to my best friend",
]

@app.route('/gradio')
@login_required
def gradio():
    with gr.Blocks() as demo:
        gr.Markdown("# Question Answering with Model and OpenVINO.\nProvide instruction which describes a task below or select among predefined examples and model writes response that performs requested task.")
        with gr.Row():
            with gr.Column(scale=4):
                user_text = gr.Textbox(placeholder="Write an email about an alpaca that likes flan", label="User instruction")
                model_output = gr.Textbox(label="Model response", interactive=False)
                performance = gr.Textbox(label="Performance", lines=1, interactive=False)
                with gr.Column(scale=1):
                    button_clear = gr.Button(value="Clear")
                    button_submit = gr.Button(value="Submit")
                gr.Examples(examples, user_text)
            with gr.Column(scale=1):
                max_new_tokens = gr.Slider(minimum=1, maximum=1000, value=256, step=1, interactive=True, label="Max New Tokens")
                top_p = gr.Slider(minimum=0.05, maximum=1.0, value=0.92, step=0.05, interactive=True, label="Top-p (nucleus sampling)")
                top_k = gr.Slider(minimum=0, maximum=50, value=0, step=1, interactive=True, label="Top-k")
                temperature = gr.Slider(minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="Temperature")

        user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens, performance], [model_output, performance])
        button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens, performance], [model_output, performance])
        button_clear.click(reset_textbox, [user_text, model_output, performance], [user_text, model_output, performance])

    return demo.launch(share=True)

if __name__ == '__main__':
    app.run(debug=True)