Spaces:
Runtime error
Runtime error
File size: 7,204 Bytes
53d77b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
from flask import Flask, render_template, redirect, url_for, request, flash
from flask_sqlalchemy import SQLAlchemy
from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user
from werkzeug.security import generate_password_hash, check_password_hash
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
import gradio as gr
from threading import Thread
from time import perf_counter
from typing import List
import numpy as np
app = Flask(__name__)
app.config['SECRET_KEY'] = 'your_secret_key'
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.db'
db = SQLAlchemy(app)
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = 'login'
class User(db.Model, UserMixin):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(80), unique=True, nullable=False)
password = db.Column(db.String(120), nullable=False)
def __repr__(self):
return '<User %r>' % self.username
# Create the database tables
with app.app_context():
db.create_all()
@login_manager.user_loader
def load_user(user_id):
return User.query.get(int(user_id))
@app.route('/', methods=['GET', 'POST'])
def signup():
if request.method == 'POST':
username = request.form['username']
password = request.form['password']
hashed_password = generate_password_hash(password, method='pbkdf2:sha256')
new_user = User(username=username, password=hashed_password)
db.session.add(new_user)
db.session.commit()
flash('Signup successful!', 'success')
return redirect(url_for('login'))
return render_template('signup.html')
@app.route('/login', methods=['GET', 'POST'])
def login():
if request.method == 'POST':
username = request.form['username']
password = request.form['password']
user = User.query.filter_by(username=username).first()
if user and check_password_hash(user.password, password):
login_user(user)
return redirect(url_for('dashboard'))
flash('Invalid username or password', 'danger')
return render_template('login.html')
@app.route('/dashboard')
@login_required
def dashboard():
return render_template('dashboard.html', name=current_user.username)
@app.route('/logout')
@login_required
def logout():
logout_user()
return redirect(url_for('login'))
# Gradio app integration
model_dir = "C:/Users/KIIT/OneDrive/Desktop/INTEL/phi-2/INT8_compressed_weights"
model_name = "susnato/phi-2"
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
tokenizer = AutoTokenizer.from_pretrained(model_name)
ov_model = OVModelForCausalLM.from_pretrained(model_dir, device="CPU", ov_config=ov_config)
prompt_template = "{instruction}"
end_key_token_id = tokenizer.eos_token_id
pad_token_id = tokenizer.pad_token_id
def estimate_latency(current_time, current_perf_text, new_gen_text, per_token_time, num_tokens):
num_current_toks = len(tokenizer.encode(new_gen_text))
num_tokens += num_current_toks
per_token_time.append(num_current_toks / current_time)
if len(per_token_time) > 10 and len(per_token_time) % 4 == 0:
current_bucket = per_token_time[:-10]
return f"Average generation speed: {np.mean(current_bucket):.2f} tokens/s. Total generated tokens: {num_tokens}", num_tokens
return current_perf_text, num_tokens
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens, perf_text):
prompt_text = prompt_template.format(instruction=user_text)
model_inputs = tokenizer(prompt_text, return_tensors="pt")
streamer = gr.utils.TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
top_k=top_k,
eos_token_id=end_key_token_id,
pad_token_id=pad_token_id,
)
t = Thread(target=ov_model.generate, kwargs=generate_kwargs)
t.start()
model_output = ""
per_token_time = []
num_tokens = 0
start = perf_counter()
for new_text in streamer:
current_time = perf_counter() - start
model_output += new_text
perf_text, num_tokens = estimate_latency(current_time, perf_text, new_text, per_token_time, num_tokens)
yield model_output, perf_text
start = perf_counter()
return model_output, perf_text
def reset_textbox(instruction, response, perf):
return "", "", ""
examples = [
"Give me a recipe for pizza with pineapple",
"Write me a tweet about the new OpenVINO release",
"Explain the difference between CPU and GPU",
"Give five ideas for a great weekend with family",
"Do Androids dream of Electric sheep?",
"Who is Dolly?",
"Please give me advice on how to write resume?",
"Name 3 advantages to being a cat",
"Write instructions on how to become a good AI engineer",
"Write a love letter to my best friend",
]
@app.route('/gradio')
@login_required
def gradio():
with gr.Blocks() as demo:
gr.Markdown("# Question Answering with Model and OpenVINO.\nProvide instruction which describes a task below or select among predefined examples and model writes response that performs requested task.")
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(placeholder="Write an email about an alpaca that likes flan", label="User instruction")
model_output = gr.Textbox(label="Model response", interactive=False)
performance = gr.Textbox(label="Performance", lines=1, interactive=False)
with gr.Column(scale=1):
button_clear = gr.Button(value="Clear")
button_submit = gr.Button(value="Submit")
gr.Examples(examples, user_text)
with gr.Column(scale=1):
max_new_tokens = gr.Slider(minimum=1, maximum=1000, value=256, step=1, interactive=True, label="Max New Tokens")
top_p = gr.Slider(minimum=0.05, maximum=1.0, value=0.92, step=0.05, interactive=True, label="Top-p (nucleus sampling)")
top_k = gr.Slider(minimum=0, maximum=50, value=0, step=1, interactive=True, label="Top-k")
temperature = gr.Slider(minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="Temperature")
user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens, performance], [model_output, performance])
button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens, performance], [model_output, performance])
button_clear.click(reset_textbox, [user_text, model_output, performance], [user_text, model_output, performance])
return demo.launch(share=True)
if __name__ == '__main__':
app.run(debug=True)
|