Spaces:
Running
Running
File size: 72,447 Bytes
1bf47cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 |
from flask import Flask, request, jsonify, Response, render_template_string, render_template, redirect, url_for, session as flask_session
import requests
import time
import json
import uuid
import random
import io
import re
from functools import wraps
import hashlib
import jwt
import os
import threading
from datetime import datetime, timedelta
app = Flask(__name__, template_folder='templates')
app.secret_key = os.environ.get("SECRET_KEY", "abacus_chat_proxy_secret_key")
app.config['PERMANENT_SESSION_LIFETIME'] = timedelta(days=7)
# 添加tokenizer服务URL
TOKENIZER_SERVICE_URL = "https://malt666-tokenizer.hf.space/count_tokens"
API_ENDPOINT_URL = "https://abacus.ai/api/v0/describeDeployment"
MODEL_LIST_URL = "https://abacus.ai/api/v0/listExternalApplications"
CHAT_URL = "https://apps.abacus.ai/api/_chatLLMSendMessageSSE"
USER_INFO_URL = "https://abacus.ai/api/v0/_getUserInfo"
COMPUTE_POINTS_URL = "https://apps.abacus.ai/api/_getOrganizationComputePoints"
COMPUTE_POINTS_LOG_URL = "https://abacus.ai/api/v0/_getOrganizationComputePointLog"
CREATE_CONVERSATION_URL = "https://apps.abacus.ai/api/createDeploymentConversation"
DELETE_CONVERSATION_URL = "https://apps.abacus.ai/api/deleteDeploymentConversation"
GET_CONVERSATION_URL = "https://apps.abacus.ai/api/getDeploymentConversation"
COMPUTE_POINT_TOGGLE_URL = "https://abacus.ai/api/v0/_updateOrganizationComputePointToggle"
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"
]
PASSWORD = None
USER_NUM = 0
USER_DATA = []
CURRENT_USER = -1
MODELS = set()
# 添加线程锁用于保护 CURRENT_USER 的访问
user_selection_lock = threading.Lock()
TRACE_ID = "3042e28b3abf475d8d973c7e904935af"
SENTRY_TRACE = f"{TRACE_ID}-80d9d2538b2682d0"
# 添加一个计数器记录健康检查次数
health_check_counter = 0
# 添加统计变量
model_usage_stats = {} # 模型使用次数统计
total_tokens = {
"prompt": 0, # 输入token统计
"completion": 0, # 输出token统计
"total": 0 # 总token统计
}
# 模型调用记录
model_usage_records = [] # 每次调用详细记录
MODEL_USAGE_RECORDS_FILE = "model_usage_records.json" # 调用记录保存文件
# 计算点信息
compute_points = {
"left": 0, # 剩余计算点
"total": 0, # 总计算点
"used": 0, # 已使用计算点
"percentage": 0, # 使用百分比
"last_update": None # 最后更新时间
}
# 计算点使用日志
compute_points_log = {
"columns": {}, # 列名
"log": [] # 日志数据
}
# 多用户计算点信息
users_compute_points = []
# 记录启动时间
START_TIME = datetime.utcnow() + timedelta(hours=8) # 北京时间
# 自定义JSON编码器,处理datetime对象
class DateTimeEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, datetime):
return obj.strftime('%Y-%m-%d %H:%M:%S')
return super(DateTimeEncoder, self).default(obj)
# 加载模型调用记录
def load_model_usage_records():
global model_usage_records
try:
if os.path.exists(MODEL_USAGE_RECORDS_FILE):
with open(MODEL_USAGE_RECORDS_FILE, 'r', encoding='utf-8') as f:
records = json.load(f)
if isinstance(records, list):
model_usage_records = records
print(f"成功加载 {len(model_usage_records)} 条模型调用记录")
else:
print("调用记录文件格式不正确,初始化为空列表")
except Exception as e:
print(f"加载模型调用记录失败: {e}")
model_usage_records = []
# 保存模型调用记录
def save_model_usage_records():
try:
with open(MODEL_USAGE_RECORDS_FILE, 'w', encoding='utf-8') as f:
json.dump(model_usage_records, f, ensure_ascii=False, indent=2, cls=DateTimeEncoder)
print(f"成功保存 {len(model_usage_records)} 条模型调用记录")
except Exception as e:
print(f"保存模型调用记录失败: {e}")
def update_conversation_id(user_index, conversation_id):
"""更新用户的conversation_id并保存到配置文件"""
try:
with open("config.json", "r") as f:
config = json.load(f)
if "config" in config and user_index < len(config["config"]):
config["config"][user_index]["conversation_id"] = conversation_id
# 保存到配置文件
with open("config.json", "w") as f:
json.dump(config, f, indent=4)
print(f"已将用户 {user_index+1} 的conversation_id更新为: {conversation_id}")
else:
print(f"更新conversation_id失败: 配置文件格式错误或用户索引越界")
except Exception as e:
print(f"更新conversation_id失败: {e}")
def resolve_config():
# 从环境变量读取多组配置
config_list = []
i = 1
while True:
cookie = os.environ.get(f"cookie_{i}")
if not cookie:
break
# 为每个cookie创建一个配置项,conversation_id初始为空
config_list.append({
"conversation_id": "", # 初始为空,将通过get_or_create_conversation自动创建
"cookies": cookie
})
i += 1
# 如果环境变量存在配置,使用环境变量的配置
if config_list:
print(f"从环境变量加载了 {len(config_list)} 个配置")
return config_list
# 如果环境变量不存在,从文件读取
try:
with open("config.json", "r") as f:
config = json.load(f)
config_list = config.get("config")
return config_list
except FileNotFoundError:
print("未找到config.json文件")
return []
except json.JSONDecodeError:
print("config.json格式错误")
return []
def get_password():
global PASSWORD
# 从环境变量读取密码
env_password = os.environ.get("password")
if env_password:
PASSWORD = hashlib.sha256(env_password.encode()).hexdigest()
return
# 如果环境变量不存在,从文件读取
try:
with open("password.txt", "r") as f:
PASSWORD = f.read().strip()
except FileNotFoundError:
with open("password.txt", "w") as f:
PASSWORD = None
def require_auth(f):
@wraps(f)
def decorated(*args, **kwargs):
if not PASSWORD:
return f(*args, **kwargs)
# 检查Flask会话是否已登录
if flask_session.get('logged_in'):
return f(*args, **kwargs)
# 如果是API请求,检查Authorization头
auth = request.authorization
if not auth or not check_auth(auth.token):
# 如果是浏览器请求,重定向到登录页面
if request.headers.get('Accept', '').find('text/html') >= 0:
return redirect(url_for('login'))
return jsonify({"error": "Unauthorized access"}), 401
return f(*args, **kwargs)
return decorated
def check_auth(token):
return hashlib.sha256(token.encode()).hexdigest() == PASSWORD
def is_token_expired(token):
if not token:
return True
try:
# Malkodi tokenon sen validigo de subskribo
payload = jwt.decode(token, options={"verify_signature": False})
# Akiru eksvalidiĝan tempon, konsideru eksvalidiĝinta 5 minutojn antaŭe
return payload.get('exp', 0) - time.time() < 300
except:
return True
def refresh_token(session, cookies):
"""Uzu kuketon por refreŝigi session token, nur revenigu novan tokenon"""
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps",
"user-agent": random.choice(USER_AGENTS),
"origin": "https://apps.abacus.ai",
"referer": "https://apps.abacus.ai/",
"cookie": cookies
}
try:
response = session.post(
USER_INFO_URL,
headers=headers,
json={},
cookies=None
)
if response.status_code == 200:
response_data = response.json()
if response_data.get('success') and 'sessionToken' in response_data.get('result', {}):
return response_data['result']['sessionToken']
else:
print(f"刷新token失败: {response_data.get('error', '未知错误')}")
return None
else:
print(f"刷新token失败,状态码: {response.status_code}")
return None
except Exception as e:
print(f"刷新token异常: {e}")
return None
def get_model_map(session, cookies, session_token):
"""Akiru disponeblan modelan liston kaj ĝiajn mapajn rilatojn"""
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps",
"user-agent": random.choice(USER_AGENTS),
"origin": "https://apps.abacus.ai",
"referer": "https://apps.abacus.ai/",
"cookie": cookies
}
if session_token:
headers["session-token"] = session_token
model_map = {}
models_set = set()
try:
response = session.post(
MODEL_LIST_URL,
headers=headers,
json={},
cookies=None
)
if response.status_code != 200:
print(f"获取模型列表失败,状态码: {response.status_code}")
raise Exception("API请求失败")
data = response.json()
if not data.get('success'):
print(f"获取模型列表失败: {data.get('error', '未知错误')}")
raise Exception("API返回错误")
applications = []
if isinstance(data.get('result'), dict):
applications = data.get('result', {}).get('externalApplications', [])
elif isinstance(data.get('result'), list):
applications = data.get('result', [])
for app in applications:
app_name = app.get('name', '')
app_id = app.get('externalApplicationId', '')
prediction_overrides = app.get('predictionOverrides', {})
llm_name = prediction_overrides.get('llmName', '') if prediction_overrides else ''
if not (app_name and app_id and llm_name):
continue
model_name = app_name
model_map[model_name] = (app_id, llm_name)
models_set.add(model_name)
if not model_map:
raise Exception("未找到任何可用模型")
return model_map, models_set
except Exception as e:
print(f"获取模型列表异常: {e}")
raise
def init_session():
get_password()
global USER_NUM, MODELS, USER_DATA
config_list = resolve_config()
user_num = len(config_list)
all_models = set()
for i in range(user_num):
user = config_list[i]
cookies = user.get("cookies")
conversation_id = user.get("conversation_id")
session = requests.Session()
session_token = refresh_token(session, cookies)
if not session_token:
print(f"无法获取cookie {i+1}的token")
continue
try:
model_map, models_set = get_model_map(session, cookies, session_token)
all_models.update(models_set)
USER_DATA.append((session, cookies, session_token, conversation_id, model_map, i))
# 对第一个成功配置的用户,初始化计算点数记录功能
if i == 0:
try:
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps",
"session-token": session_token
}
response = session.post(
COMPUTE_POINT_TOGGLE_URL,
headers=headers,
json={"alwaysDisplay": True},
cookies=None
)
if response.status_code == 200:
result = response.json()
if result.get("success"):
print("成功初始化计算点数记录功能为开启状态")
else:
print(f"初始化计算点数记录功能失败: {result.get('error', '未知错误')}")
else:
print(f"初始化计算点数记录功能失败,状态码: {response.status_code}")
except Exception as e:
print(f"初始化计算点数记录功能时出错: {e}")
except Exception as e:
print(f"配置用户 {i+1} 失败: {e}")
continue
USER_NUM = len(USER_DATA)
if USER_NUM == 0:
print("No user available, exiting...")
exit(1)
MODELS = all_models
print(f"启动完成,共配置 {USER_NUM} 个用户")
def update_cookie(session, cookies):
cookie_jar = {}
for key, value in session.cookies.items():
cookie_jar[key] = value
cookie_dict = {}
for item in cookies.split(";"):
key, value = item.strip().split("=", 1)
cookie_dict[key] = value
cookie_dict.update(cookie_jar)
cookies = "; ".join([f"{key}={value}" for key, value in cookie_dict.items()])
return cookies
user_data = init_session()
@app.route("/v1/models", methods=["GET"])
@require_auth
def get_models():
if len(MODELS) == 0:
return jsonify({"error": "No models available"}), 500
model_list = []
for model in MODELS:
model_list.append(
{
"id": model,
"object": "model",
"created": int(time.time()),
"owned_by": "Elbert",
"name": model,
}
)
return jsonify({"object": "list", "data": model_list})
@app.route("/v1/chat/completions", methods=["POST"])
@require_auth
def chat_completions():
openai_request = request.get_json()
stream = openai_request.get("stream", False)
messages = openai_request.get("messages")
if messages is None:
return jsonify({"error": "Messages is required", "status": 400}), 400
model = openai_request.get("model")
if model not in MODELS:
return (
jsonify(
{
"error": "Model not available, check if it is configured properly",
"status": 404,
}
),
404,
)
message = format_message(messages)
think = (
openai_request.get("think", False) if model == "Claude Sonnet 3.7" else False
)
return (
send_message(message, model, think)
if stream
else send_message_non_stream(message, model, think)
)
def get_user_data():
global CURRENT_USER
# 使用锁确保线程安全
with user_selection_lock:
CURRENT_USER = (CURRENT_USER + 1) % USER_NUM
current_user_index_local = CURRENT_USER # 本地副本,避免锁外访问全局变量
print(f"使用配置 {current_user_index_local+1}")
# Akiru uzantajn datumojn (使用本地索引)
session, cookies, session_token, conversation_id, model_map, user_index = USER_DATA[current_user_index_local]
# Kontrolu ĉu la tokeno eksvalidiĝis, se jes, refreŝigu ĝin
if is_token_expired(session_token):
print(f"Cookie {current_user_index_local+1}的token已过期或即将过期,正在刷新...")
new_token = refresh_token(session, cookies)
if new_token:
# Ĝisdatigu la globale konservitan tokenon (加锁保护写入)
with user_selection_lock:
# 重新获取最新的 USER_DATA 状态再更新
_session, _cookies, _, _conv_id, _model_map, _user_idx = USER_DATA[current_user_index_local]
USER_DATA[current_user_index_local] = (_session, _cookies, new_token, _conv_id, _model_map, _user_idx)
session_token = new_token # 更新函数内部使用的token
print(f"成功更新token: {session_token[:15]}...{session_token[-15:]}")
else:
print(f"警告:无法刷新Cookie {current_user_index_local+1}的token,继续使用当前token")
# 返回获取到的数据 (使用本地索引)
return (session, cookies, session_token, conversation_id, model_map, user_index)
def create_conversation(session, cookies, session_token, external_application_id=None, deployment_id=None):
"""创建新的会话"""
if not (external_application_id and deployment_id):
print("无法创建新会话: 缺少必要参数")
return None
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"cookie": cookies,
"user-agent": random.choice(USER_AGENTS),
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
create_payload = {
"deploymentId": deployment_id,
"name": "New Chat",
"externalApplicationId": external_application_id
}
try:
response = session.post(
CREATE_CONVERSATION_URL,
headers=headers,
json=create_payload
)
if response.status_code == 200:
data = response.json()
if data.get("success", False):
new_conversation_id = data.get("result", {}).get("deploymentConversationId")
if new_conversation_id:
print(f"成功创建新的conversation: {new_conversation_id}")
return new_conversation_id
print(f"创建会话失败: {response.status_code} - {response.text[:100]}")
return None
except Exception as e:
print(f"创建会话时出错: {e}")
return None
def delete_conversation(session, cookies, session_token, conversation_id, deployment_id="14b2a314cc"):
"""删除指定的对话"""
if not conversation_id:
print("无法删除对话: 缺少conversation_id")
return False
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"cookie": cookies,
"user-agent": random.choice(USER_AGENTS),
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
delete_payload = {
"deploymentId": deployment_id,
"deploymentConversationId": conversation_id
}
try:
response = session.post(
DELETE_CONVERSATION_URL,
headers=headers,
json=delete_payload
)
if response.status_code == 200:
data = response.json()
if data.get("success", False):
print(f"成功删除对话: {conversation_id}")
return True
print(f"删除对话失败: {response.status_code} - {response.text[:100]}")
return False
except Exception as e:
print(f"删除对话时出错: {e}")
return False
def get_or_create_conversation(session, cookies, session_token, conversation_id, model_map, model, user_index):
"""获取对话ID,如果不存在则创建;返回是否是使用现有会话"""
print(f"\n----- 获取会话ID (用户 {user_index+1}) -----")
# 如果有现有的会话ID,直接使用
if conversation_id:
print(f"使用现有会话ID: {conversation_id}")
return conversation_id, True
# 如果没有会话ID,创建新的
print("没有会话ID,创建新会话...")
deployment_id = "14b2a314cc"
# 确保模型信息存在
if model not in model_map or len(model_map[model]) < 2:
print(f"错误: 无法获取模型 {model} 的信息")
return None, False
external_app_id = model_map[model][0]
# 创建新会话
new_conversation_id = create_conversation(
session, cookies, session_token,
external_application_id=external_app_id,
deployment_id=deployment_id
)
if new_conversation_id:
print(f"成功创建新会话ID: {new_conversation_id}")
# 更新全局存储的会话ID
global USER_DATA, CURRENT_USER
session, cookies, session_token, _, model_map, _ = USER_DATA[CURRENT_USER]
USER_DATA[CURRENT_USER] = (session, cookies, session_token, new_conversation_id, model_map, user_index)
# 保存到配置文件
update_conversation_id(user_index, new_conversation_id)
return new_conversation_id, False
print("创建新会话失败")
return None, False
def generate_trace_id():
"""Generu novan trace_id kaj sentry_trace"""
trace_id = str(uuid.uuid4()).replace('-', '')
sentry_trace = f"{trace_id}-{str(uuid.uuid4())[:16]}"
return trace_id, sentry_trace
def send_message(message, model, think=False):
"""Flua traktado kaj plusendo de mesaĝoj"""
print("\n===== 开始处理消息 =====")
print(f"模型: {model}")
print(f"思考模式: {think}")
(session, cookies, session_token, conversation_id, model_map, user_index) = get_user_data()
print(f"使用用户配置: {user_index + 1}")
# 获取会话ID,并判断是否使用现有会话
conversation_id, is_existing = get_or_create_conversation(
session, cookies, session_token, conversation_id, model_map, model, user_index
)
# 如果没有有效的会话ID,返回错误
if not conversation_id:
return jsonify({"error": "Failed to get a valid conversation ID"}), 500
print(f"会话ID: {conversation_id} (是否为现有会话: {is_existing})")
trace_id, sentry_trace = generate_trace_id()
# 计算输入token
completion_buffer = io.StringIO() # 收集所有输出用于计算token
headers = {
"accept": "text/event-stream",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=975eec6685013679c139fc88db2c48e123d5c604,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={trace_id}",
"content-type": "text/plain;charset=UTF-8",
"cookie": cookies,
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": sentry_trace,
"user-agent": random.choice(USER_AGENTS),
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
# 构建基础请求
payload = {
"requestId": str(uuid.uuid4()),
"deploymentConversationId": conversation_id,
"message": message,
"isDesktop": False,
"chatConfig": {
"timezone": "Asia/Shanghai",
"language": "zh-CN"
},
"llmName": model_map[model][1],
"externalApplicationId": model_map[model][0]
}
# 如果是使用现有会话,添加regenerate和editPrompt参数
if is_existing:
payload["regenerate"] = True
payload["editPrompt"] = True
print("为现有会话添加 regenerate=True 和 editPrompt=True")
if think:
payload["useThinking"] = think
try:
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True,
cookies=None
)
response.raise_for_status()
def extract_segment(line_data):
try:
data = json.loads(line_data)
if "segment" in data:
if isinstance(data["segment"], str):
return data["segment"]
elif isinstance(data["segment"], dict) and "segment" in data["segment"]:
return data["segment"]["segment"]
return ""
except:
return ""
def generate():
id = ""
think_state = 2
yield "data: " + json.dumps({"object": "chat.completion.chunk", "choices": [{"delta": {"role": "assistant"}}]}) + "\n\n"
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
try:
if think:
data = json.loads(decoded_line)
if data.get("type") != "text":
continue
elif think_state == 2:
id = data.get("messageId")
segment = "<think>\n" + data.get("segment", "")
completion_buffer.write(segment) # 收集输出
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
think_state = 1
elif think_state == 1:
if data.get("messageId") != id:
segment = data.get("segment", "")
completion_buffer.write(segment)
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
else:
segment = "\n</think>\n" + data.get("segment", "")
completion_buffer.write(segment)
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
think_state = 0
else:
segment = data.get("segment", "")
completion_buffer.write(segment)
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
else:
segment = extract_segment(decoded_line)
if segment:
completion_buffer.write(segment)
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
except Exception as e:
print(f"处理响应出错: {e}")
# ---- Token 计算移到这里 ----
print("\n----- 计算 Tokens (流式结束后) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
completion_content = completion_buffer.getvalue()
completion_tokens, comp_calc_method = num_tokens_from_string(completion_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法 (优先使用精确)
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
yield "data: " + json.dumps({"object": "chat.completion.chunk", "choices": [{"delta": {}, "finish_reason": "stop"}]}) + "\n\n"
yield "data: [DONE]\n\n"
# 在流式传输完成后计算token并更新统计
# 注意: 如果客户端在流结束前断开连接,这里的 completion_content 可能不完整,
# 导致 completion_tokens 和 total_tokens 的本地记录不准确。
# 但 Abacus 的计算点数扣除通常在其服务端完成,不受此影响。
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, conversation_id)
# 更新统计信息
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return Response(generate(), mimetype="text/event-stream")
except requests.exceptions.RequestException as e:
error_details = str(e)
if hasattr(e, 'response') and e.response is not None:
if hasattr(e.response, 'text'):
error_details += f" - Response: {e.response.text[:200]}"
print(f"发送消息失败: {error_details}")
# 如果是使用现有会话失败,尝试创建新会话重试一次
if is_existing:
print("使用现有会话失败,尝试创建新会话...")
# 创建新会话
deployment_id = "14b2a314cc"
external_app_id = model_map[model][0] if model in model_map and len(model_map[model]) >= 2 else None
if external_app_id:
new_conversation_id = create_conversation(
session, cookies, session_token,
external_application_id=external_app_id,
deployment_id=deployment_id
)
if new_conversation_id:
print(f"成功创建新会话ID: {new_conversation_id},重试请求")
# 更新全局存储的会话ID
global USER_DATA, CURRENT_USER
session, cookies, session_token, _, model_map, _ = USER_DATA[CURRENT_USER]
USER_DATA[CURRENT_USER] = (session, cookies, session_token, new_conversation_id, model_map, user_index)
# 保存到配置文件
update_conversation_id(user_index, new_conversation_id)
# 修改payload使用新会话ID,并移除regenerate和editPrompt
payload["deploymentConversationId"] = new_conversation_id
if "regenerate" in payload:
del payload["regenerate"]
if "editPrompt" in payload:
del payload["editPrompt"]
try:
# 非流式重试逻辑与流式类似,但需要重新提取响应内容
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True,
cookies=None
)
response.raise_for_status()
# 重用现有提取逻辑...
# 但这里代码重复太多,实际应该重构为共享函数
buffer = io.StringIO()
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
segment = extract_segment(decoded_line)
if segment:
buffer.write(segment)
response_content = buffer.getvalue()
# ---- 重试逻辑中的 Token 计算 ----
print("\n----- 计算 Tokens (重试成功后) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
# 计算输出token并更新统计信息
completion_tokens, comp_calc_method = num_tokens_from_string(response_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, new_conversation_id)
# 更新统计信息
# 注意: 重试逻辑。Token 计算准确性依赖于 response 完整性。
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
except Exception as retry_e:
print(f"重试失败: {retry_e}")
return jsonify({"error": f"Failed to send message: {error_details}"}), 500
def send_message_non_stream(message, model, think=False):
"""Ne-flua traktado de mesaĝoj"""
print("\n===== 开始处理消息(非流式) =====")
print(f"模型: {model}")
print(f"思考模式: {think}")
(session, cookies, session_token, conversation_id, model_map, user_index) = get_user_data()
print(f"使用用户配置: {user_index + 1}")
# 获取会话ID,并判断是否使用现有会话
conversation_id, is_existing = get_or_create_conversation(
session, cookies, session_token, conversation_id, model_map, model, user_index
)
# 如果没有有效的会话ID,返回错误
if not conversation_id:
return jsonify({"error": "Failed to get a valid conversation ID"}), 500
print(f"会话ID: {conversation_id} (是否为现有会话: {is_existing})")
trace_id, sentry_trace = generate_trace_id()
headers = {
"accept": "text/event-stream",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=975eec6685013679c139fc88db2c48e123d5c604,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={trace_id}",
"content-type": "text/plain;charset=UTF-8",
"cookie": cookies,
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": sentry_trace,
"user-agent": random.choice(USER_AGENTS),
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
# 构建基础请求
payload = {
"requestId": str(uuid.uuid4()),
"deploymentConversationId": conversation_id,
"message": message,
"isDesktop": False,
"chatConfig": {
"timezone": "Asia/Shanghai",
"language": "zh-CN"
},
"llmName": model_map[model][1],
"externalApplicationId": model_map[model][0]
}
# 如果是使用现有会话,添加regenerate和editPrompt参数
if is_existing:
payload["regenerate"] = True
payload["editPrompt"] = True
print("为现有会话添加 regenerate=True 和 editPrompt=True")
if think:
payload["useThinking"] = think
try:
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True,
cookies=None
)
response.raise_for_status()
buffer = io.StringIO()
def extract_segment(line_data):
try:
data = json.loads(line_data)
if "segment" in data:
if isinstance(data["segment"], str):
return data["segment"]
elif isinstance(data["segment"], dict) and "segment" in data["segment"]:
return data["segment"]["segment"]
return ""
except:
return ""
if think:
id = ""
think_state = 2
think_buffer = io.StringIO()
content_buffer = io.StringIO()
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
try:
data = json.loads(decoded_line)
if data.get("type") != "text":
continue
elif think_state == 2:
id = data.get("messageId")
segment = data.get("segment", "")
think_buffer.write(segment)
think_state = 1
elif think_state == 1:
if data.get("messageId") != id:
segment = data.get("segment", "")
content_buffer.write(segment)
else:
segment = data.get("segment", "")
think_buffer.write(segment)
think_state = 0
else:
segment = data.get("segment", "")
content_buffer.write(segment)
except Exception as e:
print(f"处理响应出错: {e}")
think_content = think_buffer.getvalue()
response_content = content_buffer.getvalue()
# ---- Token 计算移到这里 ----
print("\n----- 计算 Tokens (非流式, think模式) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
# 计算输出token并更新统计信息
completion_tokens, comp_calc_method = num_tokens_from_string(think_content + response_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, conversation_id)
# 更新统计信息
# 注意: 如果客户端在请求完成前断开连接(理论上非流式不太可能,但网络异常可能发生),
# Token 计算的准确性取决于 response 是否完整接收。Abacus 点数扣除不受影响。
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": f"<think>\n{think_content}\n</think>\n{response_content}"
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
else:
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
segment = extract_segment(decoded_line)
if segment:
buffer.write(segment)
response_content = buffer.getvalue()
# ---- Token 计算移到这里 ----
print("\n----- 计算 Tokens (非流式) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
# 计算输出token并更新统计信息
completion_tokens, comp_calc_method = num_tokens_from_string(response_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, conversation_id)
# 更新统计信息
# 注意: 如果客户端在请求完成前断开连接(理论上非流式不太可能,但网络异常可能发生),
# Token 计算的准确性取决于 response 是否完整接收。Abacus 点数扣除不受影响。
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
except requests.exceptions.RequestException as e:
error_details = str(e)
if hasattr(e, 'response') and e.response is not None:
if hasattr(e.response, 'text'):
error_details += f" - Response: {e.response.text[:200]}"
print(f"发送消息失败: {error_details}")
# 如果是使用现有会话失败,尝试创建新会话重试一次
if is_existing:
print("使用现有会话失败,尝试创建新会话...")
# 创建新会话
deployment_id = "14b2a314cc"
external_app_id = model_map[model][0] if model in model_map and len(model_map[model]) >= 2 else None
if external_app_id:
new_conversation_id = create_conversation(
session, cookies, session_token,
external_application_id=external_app_id,
deployment_id=deployment_id
)
if new_conversation_id:
print(f"成功创建新会话ID: {new_conversation_id},重试请求")
# 更新全局存储的会话ID
global USER_DATA, CURRENT_USER
session, cookies, session_token, _, model_map, _ = USER_DATA[CURRENT_USER]
USER_DATA[CURRENT_USER] = (session, cookies, session_token, new_conversation_id, model_map, user_index)
# 保存到配置文件
update_conversation_id(user_index, new_conversation_id)
# 修改payload使用新会话ID,并移除regenerate和editPrompt
payload["deploymentConversationId"] = new_conversation_id
if "regenerate" in payload:
del payload["regenerate"]
if "editPrompt" in payload:
del payload["editPrompt"]
try:
# 非流式重试逻辑与流式类似,但需要重新提取响应内容
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True,
cookies=None
)
response.raise_for_status()
# 重用现有提取逻辑...
# 但这里代码重复太多,实际应该重构为共享函数
buffer = io.StringIO()
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
segment = extract_segment(decoded_line)
if segment:
buffer.write(segment)
response_content = buffer.getvalue()
# ---- 重试逻辑中的 Token 计算 ----
print("\n----- 计算 Tokens (重试成功后) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
# 计算输出token并更新统计信息
completion_tokens, comp_calc_method = num_tokens_from_string(response_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, new_conversation_id)
# 更新统计信息
# 注意: 重试逻辑。Token 计算准确性依赖于 response 完整性。
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
except Exception as retry_e:
print(f"重试失败: {retry_e}")
return jsonify({"error": f"Failed to send message: {error_details}"}), 500
def format_message(messages):
buffer = io.StringIO()
role_map, prefix, messages = extract_role(messages)
for message in messages:
role = message.get("role")
role = "\b" + role_map[role] if prefix else role_map[role]
content = message.get("content").replace("\\n", "\n")
pattern = re.compile(r"<\|removeRole\|>\n")
if pattern.match(content):
content = pattern.sub("", content)
buffer.write(f"{content}\n")
else:
buffer.write(f"{role}: {content}\n\n")
formatted_message = buffer.getvalue()
return formatted_message
def extract_role(messages):
role_map = {"user": "Human", "assistant": "Assistant", "system": "System"}
prefix = True # 默认添加前缀
first_message = messages[0]["content"]
pattern = re.compile(
r"""
<roleInfo>\s*
(?:user:\s*(?P<user>[^\n]*)\s*)? # Make user optional
(?:assistant:\s*(?P<assistant>[^\n]*)\s*)? # Make assistant optional
(?:system:\s*(?P<system>[^\n]*)\s*)? # Make system optional
(?:prefix:\s*(?P<prefix>[^\n]*)\s*)? # Make prefix optional
</roleInfo>\n
""",
re.VERBOSE,
)
match = pattern.search(first_message)
if match:
# 更新 role_map 如果提供了值
user_role = match.group("user")
assistant_role = match.group("assistant")
system_role = match.group("system")
if user_role: role_map["user"] = user_role
if assistant_role: role_map["assistant"] = assistant_role
if system_role: role_map["system"] = system_role
# 检查 prefix 值:仅当显式设置为非 "1" 时才将 prefix 设为 False
prefix_value = match.group("prefix")
if prefix_value is not None and prefix_value != "1":
prefix = False
# 如果 prefix_value 是 None (标签不存在) 或 "1", prefix 保持 True
messages[0]["content"] = pattern.sub("", first_message)
print(f"Extracted role map:")
print(
f"User: {role_map['user']}, Assistant: {role_map['assistant']}, System: {role_map['system']}"
)
print(f"Using prefix: {prefix}") # 打印语句保持不变,反映最终结果
# 如果没有匹配到 <roleInfo>,prefix 保持默认值 True
return (role_map, prefix, messages)
@app.route("/health", methods=["GET"])
def health_check():
global health_check_counter
health_check_counter += 1
return jsonify({
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"checks": health_check_counter
})
def keep_alive():
"""每20分钟进行一次自我健康检查"""
while True:
try:
requests.get("http://127.0.0.1:7860/health")
time.sleep(1200) # 20分钟
except:
pass # 忽略错误,保持运行
@app.route("/", methods=["GET"])
def index():
# 如果需要密码且用户未登录,重定向到登录页面
if PASSWORD and not flask_session.get('logged_in'):
return redirect(url_for('login'))
# 否则重定向到仪表盘
return redirect(url_for('dashboard'))
def num_tokens_from_string(string, model=""):
try:
print("\n===================== 开始计算token =====================")
print(f"模型: {model}")
print(f"输入内容长度: {len(string)} 字符")
request_data = {
"model": model,
"messages": [{"role": "user", "content": string}]
}
print(f"发送请求到tokenizer服务: {TOKENIZER_SERVICE_URL}")
print(f"请求数据: {json.dumps(request_data, ensure_ascii=False)}")
response = requests.post(
TOKENIZER_SERVICE_URL,
json=request_data,
timeout=10
)
print(f"\nTokenizer响应状态码: {response.status_code}")
print(f"Tokenizer响应内容: {response.text}")
if response.status_code == 200:
result = response.json()
input_tokens = result.get("input_tokens", 0)
print(f"\n成功获取token数: {input_tokens}")
print(f"使用计算方法: 精确")
print("===================== 计算完成 =====================\n")
return input_tokens, "精确"
else:
estimated_tokens = len(string) // 4
print(f"\nTokenizer服务错误: {response.status_code}")
print(f"错误响应: {response.text}")
print(f"使用估算token数: {estimated_tokens}")
print(f"使用计算方法: 估算")
print("===================== 计算完成 =====================\n")
return estimated_tokens, "估算"
except Exception as e:
estimated_tokens = len(string) // 4
print(f"\n计算token时发生错误: {str(e)}")
print(f"使用估算token数: {estimated_tokens}")
print(f"使用计算方法: 估算")
print("===================== 计算完成 =====================\n")
return estimated_tokens, "估算"
# 更新模型使用统计
def update_model_stats(model, prompt_tokens, completion_tokens, calculation_method="estimate", compute_points=None):
global model_usage_stats, total_tokens, model_usage_records
# 添加调用记录
# 获取UTC时间
utc_now = datetime.utcnow()
# 转换为北京时间 (UTC+8)
beijing_time = utc_now + timedelta(hours=8)
call_time = beijing_time.strftime('%Y-%m-%d %H:%M:%S') # 北京时间
record = {
"model": model,
"call_time": call_time,
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"calculation_method": calculation_method, # 直接使用传入的值
"compute_points": compute_points
}
model_usage_records.append(record)
# 限制记录数量,保留最新的500条
if len(model_usage_records) > 500:
model_usage_records.pop(0)
# 保存调用记录到本地文件
save_model_usage_records()
# 更新聚合统计
if model not in model_usage_stats:
model_usage_stats[model] = {
"count": 0,
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
model_usage_stats[model]["count"] += 1
model_usage_stats[model]["prompt_tokens"] += prompt_tokens
model_usage_stats[model]["completion_tokens"] += completion_tokens
model_usage_stats[model]["total_tokens"] += (prompt_tokens + completion_tokens)
total_tokens["prompt"] += prompt_tokens
total_tokens["completion"] += completion_tokens
total_tokens["total"] += (prompt_tokens + completion_tokens)
# 获取计算点信息
def get_compute_points():
global compute_points, USER_DATA, users_compute_points
if USER_NUM == 0:
return
# 清空用户计算点列表
users_compute_points = []
# 累计总计算点
total_left = 0
total_points = 0
# 获取每个用户的计算点信息
for i, user_data in enumerate(USER_DATA):
try:
session, cookies, session_token, _, _, _ = user_data
# 检查token是否有效
if is_token_expired(session_token):
session_token = refresh_token(session, cookies)
if not session_token:
print(f"用户{i+1}刷新token失败,无法获取计算点信息")
continue
USER_DATA[i] = (session, cookies, session_token, user_data[3], user_data[4], i)
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=93da8385541a6ce339b1f41b0c94428c70657e22,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={TRACE_ID}",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": SENTRY_TRACE,
"session-token": session_token,
"x-abacus-org-host": "apps",
"cookie": cookies
}
response = session.get(
COMPUTE_POINTS_URL,
headers=headers
)
if response.status_code == 200:
result = response.json()
if result.get("success") and "result" in result:
data = result["result"]
left = data.get("computePointsLeft", 0)
total = data.get("totalComputePoints", 0)
used = total - left
percentage = round((used / total) * 100, 2) if total > 0 else 0
# 获取北京时间
beijing_now = datetime.utcnow() + timedelta(hours=8)
# 添加到用户列表
user_points = {
"user_id": i + 1, # 用户ID从1开始
"left": left,
"total": total,
"used": used,
"percentage": percentage,
"last_update": beijing_now
}
users_compute_points.append(user_points)
# 累计总数
total_left += left
total_points += total
print(f"用户{i+1}计算点信息更新成功: 剩余 {left}, 总计 {total}")
# 对于第一个用户,获取计算点使用日志
if i == 0:
get_compute_points_log(session, cookies, session_token)
else:
print(f"获取用户{i+1}计算点信息失败: {result.get('error', '未知错误')}")
else:
print(f"获取用户{i+1}计算点信息失败,状态码: {response.status_code}")
except Exception as e:
print(f"获取用户{i+1}计算点信息异常: {e}")
# 更新全局计算点信息(所有用户总和)
if users_compute_points:
compute_points["left"] = total_left
compute_points["total"] = total_points
compute_points["used"] = total_points - total_left
compute_points["percentage"] = round((compute_points["used"] / compute_points["total"]) * 100, 2) if compute_points["total"] > 0 else 0
compute_points["last_update"] = datetime.utcnow() + timedelta(hours=8) # 北京时间
print(f"所有用户计算点总计: 剩余 {total_left}, 总计 {total_points}")
# 获取计算点使用日志
def get_compute_points_log(session, cookies, session_token):
global compute_points_log
try:
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"session-token": session_token,
"x-abacus-org-host": "apps",
"cookie": cookies
}
response = session.post(
COMPUTE_POINTS_LOG_URL,
headers=headers,
json={"byLlm": True}
)
if response.status_code == 200:
result = response.json()
if result.get("success") and "result" in result:
data = result["result"]
compute_points_log["columns"] = data.get("columns", {})
compute_points_log["log"] = data.get("log", [])
print(f"计算点使用日志更新成功,获取到 {len(compute_points_log['log'])} 条记录")
else:
print(f"获取计算点使用日志失败: {result.get('error', '未知错误')}")
else:
print(f"获取计算点使用日志失败,状态码: {response.status_code}")
except Exception as e:
print(f"获取计算点使用日志异常: {e}")
# 添加登录相关路由
@app.route("/login", methods=["GET", "POST"])
def login():
error = None
if request.method == "POST":
password = request.form.get("password")
if password and hashlib.sha256(password.encode()).hexdigest() == PASSWORD:
flask_session['logged_in'] = True
flask_session.permanent = True
return redirect(url_for('dashboard'))
else:
# 密码错误时提示使用环境变量密码
error = "密码不正确。请使用设置的环境变量 password 或 password.txt 中的值作为密码和API认证密钥。"
# 传递空间URL给模板
return render_template('login.html', error=error, space_url=SPACE_URL)
@app.route("/logout")
def logout():
flask_session.clear()
return redirect(url_for('login'))
@app.route("/dashboard")
@require_auth
def dashboard():
# 在每次访问仪表盘时更新计算点信息
get_compute_points()
# 计算运行时间(使用北京时间)
beijing_now = datetime.utcnow() + timedelta(hours=8)
uptime = beijing_now - START_TIME
days = uptime.days
hours, remainder = divmod(uptime.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
if days > 0:
uptime_str = f"{days}天 {hours}小时 {minutes}分钟"
elif hours > 0:
uptime_str = f"{hours}小时 {minutes}分钟"
else:
uptime_str = f"{minutes}分钟 {seconds}秒"
# 当前北京年份
beijing_year = beijing_now.year
return render_template(
'dashboard.html',
uptime=uptime_str,
health_checks=health_check_counter,
user_count=USER_NUM,
models=sorted(list(MODELS)),
year=beijing_year,
model_stats=model_usage_stats,
total_tokens=total_tokens,
compute_points=compute_points,
compute_points_log=compute_points_log,
space_url=SPACE_URL, # 传递空间URL
users_compute_points=users_compute_points, # 传递用户计算点信息
model_usage_records=model_usage_records, # 传递模型使用记录
)
# 添加更新计算点数记录设置的路由
@app.route("/update_compute_point_toggle", methods=["POST"])
@require_auth
def update_compute_point_toggle():
try:
(session, cookies, session_token, conversation_id, model_map, user_index) = get_user_data()
data = request.get_json()
if data and "always_display" in data:
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
response = session.post(
COMPUTE_POINT_TOGGLE_URL,
headers=headers,
json={"alwaysDisplay": data["always_display"]},
cookies=None
)
if response.status_code == 200:
result = response.json()
if result.get("success"):
print(f"更新计算点数记录设置为: {data['always_display']}")
return jsonify({"success": True})
return jsonify({"success": False, "error": "API调用失败"})
else:
return jsonify({"success": False, "error": "缺少always_display参数"})
except Exception as e:
print(f"更新计算点数记录设置失败: {e}")
return jsonify({"success": False, "error": str(e)})
# 获取Hugging Face Space URL
def get_space_url():
# 尝试从环境变量获取
space_url = os.environ.get("SPACE_URL")
if space_url:
return space_url
# 如果SPACE_URL不存在,尝试从SPACE_ID构建
space_id = os.environ.get("SPACE_ID")
if space_id:
username, space_name = space_id.split("/")
# 将空间名称中的下划线替换为连字符
# 注意:Hugging Face生成的URL会自动将空间名称中的下划线(_)替换为连字符(-)
# 例如:"abacus_chat_proxy" 会变成 "abacus-chat-proxy"
space_name = space_name.replace("_", "-")
return f"https://{username}-{space_name}.hf.space"
# 如果以上都不存在,尝试从单独的用户名和空间名构建
username = os.environ.get("SPACE_USERNAME")
space_name = os.environ.get("SPACE_NAME")
if username and space_name:
# 将空间名称中的下划线替换为连字符
# 同上,Hugging Face会自动进行此转换
space_name = space_name.replace("_", "-")
return f"https://{username}-{space_name}.hf.space"
# 默认返回None
return None
# 获取空间URL
SPACE_URL = get_space_url()
if SPACE_URL:
print(f"Space URL: {SPACE_URL}")
print("注意:Hugging Face生成的URL会自动将空间名称中的下划线(_)替换为连字符(-)")
def save_conversation_history(session, cookies, session_token, conversation_id, deployment_id="14b2a314cc"):
"""保存对话历史,返回使用的计算点数"""
if not conversation_id:
return False, None
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=946244517de08b08598b94f18098411f5a5352d5,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={TRACE_ID}",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": f"{TRACE_ID}-800cb7f4613dec52",
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
params = {
"deploymentId": deployment_id,
"deploymentConversationId": conversation_id,
"skipDocumentBoundingBoxes": "true",
"filterIntermediateConversationEvents": "false",
"getUnusedDocumentUploads": "false"
}
try:
response = session.get(
GET_CONVERSATION_URL,
headers=headers,
params=params,
cookies=None
)
if response.status_code == 200:
data = response.json()
if data.get("success"):
# 从最后一条BOT消息中获取计算点数
history = data.get("result", {}).get("history", [])
compute_points = None
for msg in reversed(history):
if msg.get("role") == "BOT":
compute_points = msg.get("computePointsUsed")
break
print(f"成功保存对话历史: {conversation_id}, 使用计算点: {compute_points}")
return True, compute_points
else:
print(f"保存对话历史失败: {data.get('error', '未知错误')}")
else:
print(f"保存对话历史失败,状态码: {response.status_code}")
return False, None
except Exception as e:
print(f"保存对话历史时出错: {e}")
return False, None
if __name__ == "__main__":
# 启动保活线程
threading.Thread(target=keep_alive, daemon=True).start()
# 加载历史模型调用记录
load_model_usage_records()
# 获取初始计算点信息
get_compute_points()
port = int(os.environ.get("PORT", 9876))
app.run(port=port, host="0.0.0.0")
|